Skip to main content

Advertisement

Log in

Energy Consumption and Price Forecasting Through Data-Driven Analysis Methods: A Review

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Prediction of energy consumption and price is crucial in formatting policies related to the global energy market, demand, and supply. Data-driven analysis methods are giving rise to innovations in the world energy sector, including energy finance and economics. This paper has critically evaluated expand writings committed to Energy finance and economics applications of data-driven analysis. This paper comes up with an extensive view of state of the art in the area, which is already discussed with a different procedure. This review recognizes the applications of data-driven analysis methods in various areas such as forecasting domestic, nationwide, and transport energy consumption and price forecasting of multiple commodities, including crude oil, natural gas, and electricity. We have investigated certain research papers and given conclusion based on their researched and proposed model’s prediction results and accuracies in respective areas. Our study suggests that Artificial Neural Network (ANN), Support Vector Machine (SVM), and other proposed neural network models are the most effective methods among other statistical and machine learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All relevant data and materials are presented in the main paper.

References

  1. Sun M, Wang X, Chen Y, Tian L. Energy resources demand-supply system analysis and empirical research based on non-linear approach. Fuel Energy Abstracts. 2011;36:5460–5. https://doi.org/10.1016/j.energy.2011.07.036.

    Article  Google Scholar 

  2. Yadav K, Shah M, Sircar A. Application of magnetotelluric (MT) study for the identification of shallow and deep aquifers in Dholera geothermal region. Groundwater Sustain Dev. 2020. https://doi.org/10.1016/j.gsd.2020.100472.

    Article  Google Scholar 

  3. Prajapati M, Shah M, Soni B, Parikh S, Sircar A, Balchandani S, Tala M. Geothermal-solar integrated groundwater desalination system: current status and future perspective. Groundw Sustain Dev. 2021. https://doi.org/10.1016/j.gsd.2020.100506.

    Article  Google Scholar 

  4. Cinar D, Kayakutlu G, Daim T. Development of future energy scenarios with intelligent algorithms: case of hydro in Turkey. Energy. 2010;35:1724–9. https://doi.org/10.1016/j.energy.2009.12.025.

    Article  Google Scholar 

  5. Pandya H, Sachin P, Shah M. Comprehensive review on application of various nanoparticles for the production of biodiesel. Energy Sources. 2019. https://doi.org/10.1080/15567036.2019.1648599.

    Article  Google Scholar 

  6. Darshana B, Parikh S, Shah M. Potential of Ag–Fe co-doped TiO2 nanocomposite for solar photocatalysis of high COD pharmaceutical effluent and influencing factors. Energ Ecol Environ. 2020;5:344–58. https://doi.org/10.1007/s40974-020-00162-6.

    Article  Google Scholar 

  7. Creamer G, Ghoddusi H, Rafizadeh N. Machine learning in energy economics and finance: a review. SSRN Electron J. 2018. https://doi.org/10.2139/ssrn.3270251.

    Article  Google Scholar 

  8. Shah K, Patel H, Sanghvi D, Shah M. A comparative analysis of logistic regression, random forest and KNN models for the text classification. Augment Hum Res. 2020;5:12. https://doi.org/10.1007/s41133-020-00032-0.

    Article  Google Scholar 

  9. Shah N, Engineer S, Bhagat N, Chauhan H, Shah M. Research trends on the usage of machine learning and artificial intelligence in advertising. Augmented Hum Res. 2020. https://doi.org/10.1007/s41133-020-00038-8.

    Article  Google Scholar 

  10. Shah D, Panchal M, Sanghvi A, et al. Holistic review on geosolar hybrid desalination system for sustainable development. Appl Water Sci. 2020;10:155. https://doi.org/10.1007/s13201-020-01241-z.

    Article  Google Scholar 

  11. Shah N, Vyas D, Shah K, et al. Solar-assisted geothermal heat pump models for space heating and cooling. Int J Energ Water Res. 2019;3:329–41. https://doi.org/10.1007/s42108-019-00040-w.

    Article  Google Scholar 

  12. Shah M, Kathiriya H, Kakadiya M, et al. Model design of condenser for solar assisted geothermal cooling system using software simulation. Model Earth Syst Environ. 2019;5:33–40. https://doi.org/10.1007/s40808-018-0516-z.

    Article  Google Scholar 

  13. Sözen A, Arcaklioglu E. Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey. Energy Policy. 2007;35(10):4981–92. https://doi.org/10.1016/j.enpol.2007.04.029 (ISSN 0301-4215).

    Article  Google Scholar 

  14. Cheng F, Li T, Wei Y, Fan T. The VEC-NAR model for short-term forecasting of oil prices. Energy Econ. 2018. https://doi.org/10.1016/j.eneco.2017.12.035.

    Article  Google Scholar 

  15. Godarzi AA, Amiri RM, Talaei A, Jamasb T. Predicting oil price movements: a dynamic artificial neural network approach. Energy Policy. 2014;68:371–82. https://doi.org/10.1016/j.enpol.2013.12.049 (ISSN 0301-4215).

    Article  Google Scholar 

  16. Chai J, Xing L-M, Zhou X-Y, Zhang ZG, Li J-X. Forecasting the WTI crude oil price by a hybrid-refined method. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Eneeco. 2018. https://doi.org/10.1016/j.eneco.2018.02.004.

    Article  Google Scholar 

  17. Jammazi R, Aloui C. Crude oil price forecasting: experimental evidence from wavelet decomposition and neural network modelling (August 4, 2011). Energy Econ. 2012; 34:828–841, https://ssrn.com/abstract=1904980.

  18. Li FG, Bataille C, Pye S, O’Sullivan A. Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art? Appl Energy. 2019;239:991–1002. https://doi.org/10.1016/j.apenergy.2019.02.002.

    Article  Google Scholar 

  19. Su M, Zhang Z, Zhu Ye, Donglan Z, Wen W. Data driven natural gas spot price prediction models using machine learning methods. Energies. 2019;12:1680. https://doi.org/10.3390/en12091680.

    Article  Google Scholar 

  20. Alobaidi MH, Chebana F, Meguid MA. Robust ensemble learning framework for day-ahead forecasting of household based energy consumption. Appl Energy. 2018;212:997–1012. https://doi.org/10.1016/j.apenergy.2017.12.054 (ISSN 0306-2619).

    Article  Google Scholar 

  21. Azadeh A, Tarverdian S. Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption. Energy Policy. 2007;35(10):5229–41. https://doi.org/10.1016/j.enpol.2007.04.020 (ISSN 0301-4215).

    Article  Google Scholar 

  22. Azadeh A, Ghaderi SF, Sohrabkhani S. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy. 2008;36:2637–44. https://doi.org/10.1016/j.enpol.2008.02.035.

    Article  Google Scholar 

  23. Bento PMR, Pombo JAN, Calado MRA, Mariano SJPS. A bat optimized neural network and wavelet transform approach for short-term price forecasting. Appl Energy. 2018;210:88–97. https://doi.org/10.1016/j.apenergy.2017.10.058 (ISSN 0306-2619).

    Article  Google Scholar 

  24. Debnath K, Mourshed M. Forecasting methods in energy planning models. Renew Sustain Energy Rev. 2018;88:297–325. https://doi.org/10.1016/j.rser.2018.02.002.

    Article  Google Scholar 

  25. Patel H, Prajapati D, Mahida D, Shah M. Transforming petroleum downstream sector through big data: a holistic review. J Pet Explor Prod Technol. 2020;10(6):2601–11.

    Article  Google Scholar 

  26. Patel D, Shah Y, Thakkar N, Shah K, Shah M. Implementation of artificial intelligence techniques for cancer detection. Augment Hum Res. 2020;5(1):6. https://doi.org/10.1007/s41133-019-0024-3.

    Article  Google Scholar 

  27. Patel D, Shah D, Shah M. The intertwine of brain and body: a quantitative analysis on how big data influences the system of sports. Ann Data Sci. 2020;7:1–16. https://doi.org/10.1007/s40745-019-00239-y.

    Article  Google Scholar 

  28. Patel P, Patel B, Vekaria E, et al. Biophysical economics and management of biodiesel, a harbinger of clean and sustainable energy. Int J Energ Water Res. 2020;4:411–23. https://doi.org/10.1007/s42108-020-00087-0.

    Article  Google Scholar 

  29. Ahir K, Govani K, Gajera R, Shah M. Application on virtual reality for enhanced education learning, military training and sports. Augment Hum Res. 2020;5:7.

    Article  Google Scholar 

  30. Talaviya T, Shah D, Patel N, Yagnik H, Shah M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020;4:58–73. https://doi.org/10.1016/j.aiia.2020.04.002.

    Article  Google Scholar 

  31. Jha K, Doshi A, Patel P, Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artif Intell Agric. 2019;2:1–12.

    Google Scholar 

  32. Safari A, Davallou M. Oil price forecasting using a hybrid model. Energy. 2018;148(C):49–58. https://doi.org/10.1016/j.energy.2018.01.007 (Elsevier).

    Article  Google Scholar 

  33. Kakkad V, Patel M, Shah M. Biometric authentication and image encryption for image security in cloud framework. Multiscale Multidiscip Model, Exp Des. 2019;2(4):233–48.

    Article  Google Scholar 

  34. Pathan M, Patel N, Yagnik H, Shah M. Artificial cognition for applications in smart agriculture: a comprehensive review. Artif Intell Agric. 2020;4:81–95. https://doi.org/10.1016/j.aiia.2020.06.001.

    Article  Google Scholar 

  35. Bkassiny M, Li Y, Jayaweera SK. A Survey on Machine-Learning Techniques in Cognitive Radios. IEEE Commun Surv Tutor. 2013;15(3):1136–59. https://doi.org/10.1109/SURV.2012.100412.00017.

    Article  Google Scholar 

  36. Naik B, Mehta A, Shah M. Denouements of machine learning and multimodal diagnostic classification of Alzheimer’s disease. Vis Comput Ind Biomed Art. 2020;3:26. https://doi.org/10.1186/s42492-020-00062-w.

    Article  Google Scholar 

  37. Gupta A, Dengre V, Kheruwala HA, et al. Comprehensive review of text-mining applications in finance. Financ Innov. 2020;6:39. https://doi.org/10.1186/s40854-020-00205-1.

    Article  Google Scholar 

  38. Desai M, Shah M. An anatomization on Breast Cancer Detection and Diagnosis employing Multi-layer Perceptron Neural Network (MLP) and Convolutional Neural Network (CNN). Clin eHealth. 2020. https://doi.org/10.1016/j.ceh.2020.11.002.

    Article  Google Scholar 

  39. Pandya R, Nadiadwala S, Shah R, Shah M. Buildout of methodology for meticulous diagnosis of K-complex in EEG for aiding the detection of Alzheimer’s by artificial intelligence. Augment Hum Res. 2020;5(1):3.

    Article  Google Scholar 

  40. Batta M. Machine Learning Algorithms - A Review. Int J Sci Res. 2020;9(1):381–6.

    Google Scholar 

  41. Sukhadia A, Upadhyay K, Gundeti M, Shah S, Shah M. Optimization of smart traffic governance system using artificial intelligence. Augment Hum Res. 2020;5(1):13.

    Article  Google Scholar 

  42. Thakkar H, Shah V, Yagnik H, Shah M. Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis. Clin eHealth. 2020. https://doi.org/10.1016/j.ceh.2020.11.001.

    Article  Google Scholar 

  43. Nwaogazie I. Effect of behaviour-based safety intervention in pipeline operation sites in Nigeria. Int J Health Safe Environ. 2017;3:111–27.

    Google Scholar 

  44. Kundalia K, Patel Y, Shah M. Multi-label movie genre detection from a movie poster using knowledge transfer learning. Augment Hum Res. 2020;5(1):11. https://doi.org/10.1007/s41133-019-0029-y.

    Article  Google Scholar 

  45. Parekh V, Shah D, Shah M. Fatigue detection using artificial intelligence framework. Augment Hum Res. 2020;5:5.

    Article  Google Scholar 

  46. Parekh P, Patel S, Patel N, Shah M. Systematic review and meta-analysis of augmented reality in medicine, retail, and games. Vis Comput Ind Biomed Art. 2020;3:21. https://doi.org/10.1186/s42492-020-00057-7.

    Article  Google Scholar 

  47. Jani K, Chaudhuri M, Patel H, Shah M. Machine learning in films: an approach towards automation in film censoring. J Data Inf Manag. 2020;2(1):55–64. https://doi.org/10.1007/s42488-019-00016-9.

    Article  Google Scholar 

  48. Gandhi M, Kamdar J, Shah M. Preprocessing of non-symmetrical images for edge detection. Augment Hum Res. 2020;5:10. https://doi.org/10.1007/s41133-019-0030-5.

    Article  Google Scholar 

  49. Panchiwala S, Shah M. A comprehensive study on critical security issues and challenges of the IoT world. J Data Inf Manag. 2020. https://doi.org/10.1007/s42488-020-00030-2.

    Article  Google Scholar 

  50. Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis. Cambridge: Cambridge University Press; 2004. https://doi.org/10.1017/CBO9780511809682.

    Book  MATH  Google Scholar 

  51. Zhang W, Robinson C, Guhathakurta S, Garikapati VM, Dilkina B, Brown MA, Pendyala RM. Estimating residential energy consumption in metropolitan areas: a microsimulation approach. Energy. 2018. https://doi.org/10.1016/j.energy.2018.04.161.

    Article  Google Scholar 

  52. Kialashaki A, Reisel JR. Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks. Appl Energy. 2013;108:271–80. https://doi.org/10.1016/j.apenergy.2013.03.034 (ISSN 0306-2619).

    Article  Google Scholar 

  53. Özmen A, Yılmaz Y, Weber G-W. Natural gas consumption forecast with MARS and CMARS models for residential users. Energy Econ. 2018;70:357–81. https://doi.org/10.1016/j.eneco.2018.01.022.1 (ISSN 0140-9883).

    Article  Google Scholar 

  54. Zhang X, Grolinger K, Capretz M, Seewald L. Forecasting residential energy consumption: single household perspective. 2018; 110–117. https://doi.org/10.1109/ICMLA.2018.00024.

  55. Geem ZW, Roper W. Energy demand estimation of South Korea using artificial neural network. Energy Policy. 2009;37:4049–54. https://doi.org/10.1016/j.enpol.2009.04.049.

    Article  Google Scholar 

  56. Antanasijević D, Pocajt V, Ristić M, Perić-Grujić A. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. Energy. 2015;84:816–24. https://doi.org/10.1016/j.energy.2015.03.060 (ISSN 0360-5442).

    Article  Google Scholar 

  57. Sözen A. Future projection of the energy dependency of Turkey using artificial neural network. Energy Policy. 2009;37:4827–33. https://doi.org/10.1016/j.enpol.2009.06.040.

    Article  Google Scholar 

  58. Li J, Wang R, Wang J, Li Y. Analysis and forecasting of the oil consumption in China based on combination models optimized by artificial intelligence algorithms. Energy. 2018;144:243–64. https://doi.org/10.1016/j.energy.2017.12.042.

    Article  Google Scholar 

  59. Szoplik J. Forecasting of natural gas consumption with artificial neural networks. Energy. 2015. https://doi.org/10.1016/j.energy.2015.03.084.

    Article  Google Scholar 

  60. Li K, Zhang T. Forecasting electricity consumption using an improved grey prediction model. Information. 2018;9:204. https://doi.org/10.3390/info9080204.

    Article  Google Scholar 

  61. Murat Y, Ceylan H. Use of artificial neural networks for transport energy demand modeling. Energy Policy. 2006. https://doi.org/10.1016/j.enpol.2005.02.010.

    Article  Google Scholar 

  62. Forouzanfar M, Doustmohammadi A, Hasanzadeh S, Shakouri HG. Transport energy demand forecast using multi-level genetic programming. Appl Energy. 2012;91(1):496–503. https://doi.org/10.1016/j.apenergy.2011.08.018 (ISSN 0306-2619).

    Article  Google Scholar 

  63. Limanond T, Jomnonkwao S, Srikaew A. Projection of future transport energy demand of Thailand. Energy Policy. 2011;39:2754–63. https://doi.org/10.1016/j.enpol.2011.02.045.

    Article  Google Scholar 

  64. Movagharnejad M, Mehdizadeh B, Banihashemi M, Kordkheili MS. Forecasting the differences between various commercial oil prices in Persian Gulf Region by neural network. Energy. 2011;36:3979–3984. doi:10.1016/j.energy.2011.05.004

    Article  Google Scholar 

  65. Barunik J, Malinska B. Forecasting the term structure of crude oil futures prices with neural networks. Appl Energy. 2015. https://doi.org/10.1016/j.apenergy.2015.11.051.

    Article  Google Scholar 

  66. Chiroma H, Abdulkareem S, Herawan T. Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction. Appl Energy. 2015. https://doi.org/10.1016/j.apenergy.2014.12.045.

    Article  Google Scholar 

  67. Huang L, Wang J. Global crude oil price prediction and synchronization based accuracy evaluation using random wavelet neural network. Energy. 2018. https://doi.org/10.1016/j.energy.2018.03.099.

    Article  Google Scholar 

  68. Ju K, Su B, Zhou D, Wu J, Liu L. Macroeconomic performance of oil price shocks: outlier evidence from nineteen major oil-related countries/regions. Energy Econ. 2016. https://doi.org/10.1016/j.eneco.2016.10.009.

    Article  Google Scholar 

  69. Khashman A, Nwulu N. Support vector machines versus back propagation algorithm for oil price prediction. Berlin: Springer; 2011. p. 530–8. https://doi.org/10.1007/978-3-642-21111-9_60.

    Book  Google Scholar 

  70. Fan Y, Liang Q, Wei Y. A generalized pattern matchingapproach for multi-step prediction of crude oil price. Energy Econ. 2008;30(3):889–904.

    Article  Google Scholar 

  71. Ceperic E, Žiković S, Ceperic V. Short-term forecasting of natural gas prices using machine learning and feature selection algorithms. Energy. 2017. https://doi.org/10.1016/j.energy.2017.09.026.

    Article  Google Scholar 

  72. Ranjbar M, Soleymani S, Sadati N, Ranjbar AM. Electricity price forecasting using artificial neural network. In: 2006 international conference on power electronic, drives and energy systems, New Delhi, 2006, pp. 1–5, https://doi.org/10.1109/PEDES.2006.344294.

  73. Yousefi A, Omid AS, Tony J. Big data analytics for electricity price forecast. In: Leonard B, Makoto T, Fatos X, Tomoya E, editors. Web, Artificial intelligence and network applications, vol. 927. Cham: Springer International Publishing; 2019. p. 915–22. https://doi.org/10.1007/978-3-030-15035-8_90.

    Chapter  Google Scholar 

  74. Luo X, Zhu Xu, Lim E. A hybrid model for short term real-time electricity price forecasting in smart grid. Big Data Analytics. 2018. https://doi.org/10.1186/s41044-018-0036-x.

    Article  Google Scholar 

  75. Müller O, Fay M, vom Brocke J. The effect of big data and analytics on firm performance: an econometric analysis considering industry characteristics. J Manag Inf Syst. 2018;35(2):488–509. https://doi.org/10.1080/07421222.2018.1451955.

    Article  Google Scholar 

  76. Munodawafa R, Johl S. Big data analytics capabilities and eco-innovation: a study of energy companies. Sustainability. 2019;11:4254. https://doi.org/10.3390/su11154254.

    Article  Google Scholar 

  77. Fernando Y, Hor W. Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of Malaysian manufacturing firms. Resour Conserv Recycl. 2017. https://doi.org/10.1016/j.resconrec.2017.07.023 (Forthcoming).

    Article  Google Scholar 

  78. Micheli G, Soda E, Vespucci M, Gobbi M, Bertani A. Big data analytics: an aid to detection of non-technical losses in power utilities. CMS. 2018;16:1–15. https://doi.org/10.1007/s10287-018-0325-x.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to School of Petroleum technology and Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University for permission to publish this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Patel.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H., Shah, M. Energy Consumption and Price Forecasting Through Data-Driven Analysis Methods: A Review. SN COMPUT. SCI. 2, 315 (2021). https://doi.org/10.1007/s42979-021-00698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00698-2

Keywords

Navigation