Skip to main content
Log in

Simulation and Analysis of a Chaos-Masking Communication Scheme Based on Electronic Simulator for Electro-Optic Modulator with Noise

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Chaotic systems provide a good mechanism for signal generation, with potential applications to communications. Because chaotic signals are difficult to predict, they can be used for bearing information signals in chaos-masking communication scheme. This paper describes communication with chaos. A message-bearing signal is hidden within the chaotic signal generated from the transmitter and recovered via chaos synchronization on the receiver side. Here in this paper, two analog computing circuits mimicking the characteristic of electro-optic modulator have been deployed as transmitter and receiver of the communication network. The whole setup has been realized in spice. The chaotic series obtained from the transmitter circuit was modulated and transmitted to the second one which behaves like a receptor and demodulates the chaotic signal through synchronization technique. The goal of this experiment was to design and simulate a simple chaos-masking communication scheme in SPICE using an electronic simulator for electro-optic modulator with a cos2 type of nonlinearity and subsequently realizing the noisy model of the whole setup using OpAmp-based electronic circuit. Simulation and analysis reveal the fact that the said simulator is highly insusceptible to noise, which is good for communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Corron NJ, Hahs DW. A new approach to communications using chaotic signals. IEEE Trans Circuits Syst I Fundam Theory Appl. 1997;44(5):373–82. https://doi.org/10.1109/81.572333.

    Article  MATH  Google Scholar 

  2. Pecora LM, Carroll TL. Synchronization of chaotic systems. Chaos. 1990;25(9):821–5. https://doi.org/10.1063/1.4917383.

    Article  MathSciNet  MATH  Google Scholar 

  3. Coumo KM, Oppenheim AV. Roubustness and signal recovery in a synchronized chaotic system. Int J Bifurc Chaos. 1993;3(6):1629–38.

    Article  Google Scholar 

  4. Aihara K. Chaos and its applications. Proced IUTAM. 2012;5(1):199–203. https://doi.org/10.1016/j.piutam.2012.06.027.

    Article  Google Scholar 

  5. Strogatz SH, Fox RF. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. New York: Perseus Book Publishing; 1995. p. 1–505. https://doi.org/10.1063/1.2807947.

    Book  Google Scholar 

  6. Gastaud N, et al. Electro-optical chaos for multi-10 Gbit /s optical transmissions. Electron Lett. 2004;40(14):40–1.

    Article  Google Scholar 

  7. Lavrov R, Peil M, Jacquot M, Larger L, Udaltsov V, Dudley J. Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization. Phys Rev E. 2009;80:1–9. https://doi.org/10.1103/PhysRevE.80.026207.

    Article  Google Scholar 

  8. Ghosh AK, Verma P. The Lyapunov exponent of chaos generated by acousto-optic modulators with feedback. Opt Eng. 2011;50:1–20.

    Google Scholar 

  9. Palodiya V, Raghuwanshi SK. Performance Study of optical Modulator based on electrooptic effect. J Phys Conf Ser. 2016;735(1):1–8. https://doi.org/10.1088/1742-6596/735/1/012071.

    Article  Google Scholar 

  10. Pisarchik AN, Ruiz-Oliveras FR. Optical chaotic communication using generalized and complete synchronization. IEEE J Quantum Electron. 2010;46(3):279–84. https://doi.org/10.1109/JQE.2009.2032429.

    Article  Google Scholar 

  11. Gao JB, Hu J, Tung WW, Cao YH. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Phys Rev E. 2006;74(1–9):066204. https://doi.org/10.1103/PhysRevE.74.066204.

    Article  MathSciNet  Google Scholar 

  12. Ghosh AK, Dutta A, Mukherjee A. Noise tolerance in optical chaos encrypted communication using nonlinear electro-optic systems. In: Proceedings of Photonics International Conference on Fiber Optics and Photonics, IIT Delhi, 2018, pp. 1–2.

  13. Larger L, Lacourt PA, Poinsot S, Hanna M. From flow to map in an experimental high-dimensional electro-optic nonlinear delay oscillator. Phys Rev Lett. 2005;95(4):043903. https://doi.org/10.1103/PhysRevLett.95.043903.

    Article  Google Scholar 

  14. Ke J, et al. 32 Gb/s chaotic optical communications by deep-learning-based chaos synchronization. Opt Lett. 2019;44(23):5776–86. https://doi.org/10.1364/ol.44.005776.

    Article  Google Scholar 

  15. Miliou AN, Antoniades IP, Stavrinides SG, Anagnostopoulos AN. Secure communication by chaotic synchronization: Robustness under noisy conditions. Nonlinear Anal Real World Appl. 2007;8(3):1003–12. https://doi.org/10.1016/j.nonrwa.2006.05.004.

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang X, et al. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop. Opt Express. 2016;24(25):28804–14. https://doi.org/10.1364/oe.24.028804.

    Article  Google Scholar 

  17. Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Phys D Nonlinear Phenom. 1993;65(1–2):117–34.

    Article  MathSciNet  Google Scholar 

  18. Kodba S, Perc M, Marhl M. Detecting chaos from a time series. Eur J Phys. 2005;26:205–15. https://doi.org/10.1088/0143-0807/26/1/021.

    Article  Google Scholar 

  19. Balcerzak M, Pikunov D, Dabrowski A. The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems. Nonlinear Dyn. 2018;94(4):3053–65. https://doi.org/10.1007/s11071-018-4544-z.

    Article  Google Scholar 

  20. Ohtsubo J. Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback. IEEE J Quantum Electron. 2002;38(9):1141–54. https://doi.org/10.1109/JQE.2002.801883.

    Article  Google Scholar 

  21. Jakimoski G, Subbalakshmi KP. Discrete Lyapunov exponent and differential cryptanalysis. IEEE Trans Circiuts Syst. 2007;54(6):499–501.

    Google Scholar 

  22. Brandon J, Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. Math Gaz. 1991;75(472):255.

    Article  Google Scholar 

  23. Roy R. Optical communication with chaotic waveforms. Conf Proc Lasers Electro-Opt Soc Annu Meet. 1999;81(16):3547–50. https://doi.org/10.1109/leos.1999.813638.

    Article  Google Scholar 

  24. Yi GH, He GW. Synchronous chaos in the coupled system of two logistic maps. Chaos Solitons Fractals. 2005;23(3):909–13. https://doi.org/10.1016/j.chaos.2004.04.036.

    Article  MATH  Google Scholar 

  25. Lai YC, Ye N. Recent developments in chaotic time series analysis. Int J Bifurc Chaos. 2003;13(6):1383–422. https://doi.org/10.1142/S0218127403007308.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Datta.

Ethics declarations

Conflict of interest

No conflict of interest exists for all participating authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Cyber Security and Privacy in Communication Networks” guest-edited by Rajiv Misra, R K Shyamsunder, Alexiei Dingli, Natalie Denk, Omer Rana, Alexander Pfeiffer, Ashok Patel and Nishtha Kesswani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A., Mukherjee, A. & Ghosh, A.K. Simulation and Analysis of a Chaos-Masking Communication Scheme Based on Electronic Simulator for Electro-Optic Modulator with Noise. SN COMPUT. SCI. 2, 240 (2021). https://doi.org/10.1007/s42979-021-00622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00622-8

Keywords

Navigation