Skip to main content
Log in

Design, Modeling and Experimental Study of GHz Patch Antenna Coated with Conductive Layer of Nanomaterial for Enhanced Characteristics with Defected Ground Structure in Communication Network Applications

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This paper deals with the design, modeling, and study of nanomaterial-based novel type GHz patch antenna with defected ground structure etched on an epoxy dielectric material suitable for wireless communication network applications. Proposed antennas are homogeneously coated with titanium oxide nanomaterial that appears to have greater conductivity compared to copper patch to yield the best possible results. The coating is made by radio frequency sputtering process. In this, we first discuss the state of art for achieving resonance and later providing the assessment on their performance characteristics parameters of antenna etched on glass epoxy dielectric material with a conclusion. Some of the parameters studied are return loss (RL), 2D-360° patterns, and VSWR. The designed dimensions of a patch having a length, width are kept constant as a factor of wavelength (λ). The outlook of the work clearly describes that the proposed antennas have a broadband nature with improved characteristics. The antennas exhibited a bandwidth of 45.30% (with RL = − 31.88 dB) for a decent VSWR less than 1.5 is seen as the improving feature through the experimental process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Garg R, Bhartia P, Bhal IJ, Ittipiboon A. Microstrip antenna design handbook. Boston: Artech House; 2001.

    Google Scholar 

  2. Chulvanich C, Nakasuwan J, Songthanapitak N, Ansntrasirichai N, Wakabayashi T. Design of narrow slot antenna for dual frequency. PIERS Online. 2007;3(7):1024–8.

    Article  Google Scholar 

  3. Wang YJ, Lee CK. Design of dual-frequency microstrip patch antennas and application for IMT-2000 mobile handsets. Prog Electromagn Res. 2002;83:265–78.

    Article  Google Scholar 

  4. Shynu SV, Augustin G, Anandan CK, Mohanan P, Vasudevan K. Design of compact reconfigurable dual frequency microstrip antennas using varactor diode. Prog Electromagn Res. 2008;60:197–205.

    Article  Google Scholar 

  5. Pal A, Behera S, Vinoy KJ. Design of multi-frequency microstrip antennas using multiple rings. IET Microw Antennas Propag. 2009;3:77–84.

    Article  Google Scholar 

  6. Krishna DD, Gopikrishna M, Aanandan CK, Mohanan P, Vasudevan K. Compact dual band slot loaded circular microstrip antenna with a superstrate. Prog Electromagn Res. 2008;83:245–55.

    Article  Google Scholar 

  7. Song CTP, Hall PS, Ghafouri-Shiraz H. Multiband multiple ring monopole antennas. IEEE Trans Antennas Propag. 2003;51(4):722–9.

    Article  Google Scholar 

  8. Archevapanich T, Nakasuwan J, Songthanapitak N, Ansntrasirichai N, Wakabayashi T. E-shaped slot antenna for WLAN applications. PIERS Online. 2007;3(7):1119–23.

    Article  Google Scholar 

  9. Ren YJ, Chang K. An annular ring antenna for UWB communications. IEEE Antennas Wirel Propag Lett. 2006;5(1):274–6.

    Article  MathSciNet  Google Scholar 

  10. Mayhew-Rydgers G, Avondale JW, Joubert J. New feeding mechanism for annular-ring microstrip antenna. Electron Lett. 2000;36:605–6.

    Article  Google Scholar 

  11. Nurie NS, Langley RJ. Input impedance of concentric ring microstrip antennas for dual frequency band operation including surface wave coupling. IEE Proc. 1990;137(6):331–6.

    Google Scholar 

  12. Misra I, Chowdhury SK. Study of impedance and radiation properties of a concentric microstrip triangular-ring antenna and its modeling techniques using FDTD method. IEEE Trans Antennas Propag. 2003;46(4):531–7.

    Article  Google Scholar 

  13. Latif SI, Shafai L. Dual-layer square-ring (DLSRA) for circular polarization. In: IEEE antennas and propagation society international symposium 2A; 2005. pp. 525–28

  14. Garg R, Reddy VS. Edge feeding of microstrip ring antennas. IEEE Trans Antennas Propag. 2003;51(8):1941–6.

    Article  Google Scholar 

  15. Bafrooei PM, Shafai L. Characteristics of single and double-layer microstrip square-ring antennas. IEEE Trans Antennas Propag. 1999;47(10):1633–9.

    Article  Google Scholar 

  16. Behera S, Vinoy KJ. Design of dual frequency microstrip ring antennas. In: IEEE international symposium on microwaves ISM 08; 2008. pp. 277–28

  17. Hopkins R, Free C. Equivalent circuit for the microstrip ring resonator suitable for broadband materials characterization. IET Microw Antennas Propag. 2008;2(1):66–73.

    Article  Google Scholar 

  18. Yang SLS, Kishk AA, Lee KF. Frequency reconfigurable U-slot microstrip patch antenna. IEEE Antennas Wirel Propag Lett. 2008;7:127–9.

    Article  Google Scholar 

  19. Wi SH, Kim JM, Yoo TH, Lee HJ, Park JY, Yook JG, Park HK. Bow-tie-shaped meander slot antenna for 5 GHz application. Proc IEEE Int Symp Antenna Propag. 2002;2:456–9.

    Google Scholar 

  20. Chair R, Mak CL, Lee KF, Luk KM, Kishk AA. Miniature wide-band half U-slot and half E-shaped patch antennas. IEEE Trans Antennas Propag. 2005;53:2645–52.

    Article  Google Scholar 

  21. Khodaei GF, Nourinia J, Ghobadi C. A practical miniaturized U-slot patch antenna with enhanced bandwidth. Prog Electromagn Res B. 2008;3:47–62.

    Article  Google Scholar 

  22. Misran N, Shakib MN, Islam MT, Yatim B. Design analysis of a slotted microstrip antenna for wireless communication. Proc World Acad Sci Eng Technol. 2009;37:448–50.

    Google Scholar 

  23. Nasimuddin N, Chen ZN, Qing X. Asymmetric-circular shaped slotted microstrip antenna for circular polarization. IEEE Trans Antennas Propag. 2010;58:3821–8.

    Article  Google Scholar 

  24. Nasimuddin N, Chen ZN, Qing X. Slotted microstrip antenna for circular polarization with compact size. IEEE Antenna Propag Mag. 2013;55(2):124–37.

    Article  Google Scholar 

  25. Rhee S, Yun G. CPW fed slot antenna for triple-frequency band operation. Electron Lett. 2006;42(17):952–3.

    Article  Google Scholar 

  26. Rafi GZB, Shafai L. Wideband V-slotted diamond-shaped microstrip patch antenna. Electron Lett. 2004;40(19):1166–7.

    Article  Google Scholar 

  27. Mailloux RJ, et al. Microstrip array technology. IEEE Trans Antennas Propagate. 1981;29:25–37.

    Article  Google Scholar 

Download references

Funding

Vision Group of Science & technology (VGST) and Karnataka Science & Technology Promotion Society (KSTePs), Government of Karnataka, India (VGST/ KSTePs: GRD.731) has supported in the form of funding this work in the form of research project grants under RGS/F scheme.

Author information

Authors and Affiliations

Authors

Contributions

APA: literature survey, testing, result extraction, SSK: paper writing, framing the results. RP: tabulation and data gathering. PVH: revision and re-correction.

Corresponding author

Correspondence to Ambresh P. Ambalgi.

Ethics declarations

Conflict of interest

There are no potential competing interests. All the authors confirm that we approve the manuscript for submission.

Consent for publication

We the author(s) also confirm that the content of the manuscript has not been published, or submitted for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Data Science and Communication” guest edited by Kamesh Namudri, Naveen Chilamkurti, Sushma S J and S. Padmashree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambalgi, A.P., Kamalapurkar, S.S., Hunagund, P.V. et al. Design, Modeling and Experimental Study of GHz Patch Antenna Coated with Conductive Layer of Nanomaterial for Enhanced Characteristics with Defected Ground Structure in Communication Network Applications. SN COMPUT. SCI. 2, 152 (2021). https://doi.org/10.1007/s42979-021-00501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00501-2

Keywords

Navigation