Acharya UR, Bhat S, Koh JE, Bhandary SV, Adeli H. A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput Biol Med. 2017;88(Supplement C):72–83.
Article
Google Scholar
Acharya UR, Dua S, Du X, Vinitha Sree S, Chua CK. Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans Inf Technol Biomed. 2011;15(3):449–55.
Article
Google Scholar
Ali R, Sheng B, Li P, Chen Y, Li H, Yang P, Jung Y, Kim J, Chen CP. Optic disc and cup segmentation through fuzzy broad learning system for glaucoma screening. IEEE Trans Ind Inform. 2021;17(4):2476–87.
Article
Google Scholar
Aquino A, Gegundez-Arias ME, Marin D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging. 2010;29(11):1860–9.
Article
Google Scholar
Asem MM, Oveisi IS, Janbozorgic M. Blood vessel segmentation in modern wide-field retinal images in the presence of additive gaussian noise. J Med Imaging. 2018;5(3):031405. https://doi.org/10.1117/1.JMI.5.3.031405.
Article
Google Scholar
Cheng J, Liu J, Xu Y, Yin F, Wong DWK, Tan NM, Tao D, Cheng CY, Aung T, Wong TY. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging. 2013;32(6):1019–32.
Article
Google Scholar
Cheng J, Yin F, Wong DWK, Tao D, Liu J. Sparse dissimilarity-constrained coding for glaucoma screening. IEEE Trans Biomed Eng. 2015;62(5):1395–403.
Article
Google Scholar
Chrástek R, Wolf M, Donath K, Niemann H, Paulus D, Hothorn T, Lausen B, Lämmer R, Mardin C, Michelson G. Automated segmentation of the optic nerve head for diagnosis of glaucoma. Med Image Anal. 2005;9(4):297–314.
Article
Google Scholar
Dai B, Wu X, Bu W. Optic disc segmentation based on variational model with multiple energies. Pattern Recognit. 2017;64:226–35.
Article
Google Scholar
Damon WWK, Liu J, Meng TN, Fengshou Y, Yin WT. Automatic detection of the optic cup using vessel kinking in digital retinal fundus images. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI); 2012. p. 1647–50.
Fantin G, Conrad K, Farida C. Statistical atlas-based descriptor for an early detection of optic disc abnormalities. J Med Imaging. 2018;5(1):014006. https://doi.org/10.1117/1.JMI.5.1.014006.
Article
Google Scholar
Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016 http://www.deeplearningbook.org.
Guo Y, Zou B, Chen Z, He Q, Liu Q, Zhao R. Optic cup segmentation using large pixel patch based CNNs. In: Proceedings of the ophthalmic medical image analysis, third international workshop, OMIA held in conjunction with MICCAI; 2016. p. 129–36.
Haleem MS, Han L, van Hemert J, Li B. Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput Med Imaging Graph. 2013;37(7):581–96.
Article
Google Scholar
Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P, Larochelle H. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.
Article
Google Scholar
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR); 2016. p. 770–8.
Issac A, Parthasarthi M, Dutta MK. An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. In: 2015 2nd international conference on signal processing and integrated networks (SPIN); 2015. p. 143–7.
Jiang Y, Tan N, Peng T. Optic disc and cup segmentation based on deep convolutional generative adversarial networks. IEEE Access. 2019;7:64483–93.
Article
Google Scholar
Jiang Z, Zhang H, Wang Y, Ko SB. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imaging Graph. 2018;68:1–15.
Article
Google Scholar
Joshi GD, Sivaswamy J, Karan K, Krishnadas SR. Optic disk and cup boundary detection using regional information. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro; 2010. p. 948–51.
Joshi GD, Sivaswamy J, Krishnadas SR. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans Med Imaging. 2011;30(6):1192–205.
Article
Google Scholar
Joshi GD, Sivaswamy J, Krishnadas SR. Depth discontinuity-based cup segmentation from multiview color retinal images. IEEE Trans Biomed Eng. 2012;59(6):1523–31.
Article
Google Scholar
Lalonde M, Beaulieu M, Gagnon L. Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imaging. 2001;20(11):1193–200.
Article
Google Scholar
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
Article
Google Scholar
Lim T, Chattopadhyay S, Acharya UR. A survey and comparative study on the instruments for glaucoma detection. Med Eng Phys. 2012;34(2):129–39.
Article
Google Scholar
Linn A. Microsoft researchers win ImageNet computer vision challenge; 2015. https://blogs.microsoft.com/ai/2015/12/10/microsoft-researchers-win-imagenet-computer-vision-challenge
Liskowski P, Krawiec K. Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging. 2016;35(11):2369–80.
Article
Google Scholar
Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L. Optic nerve head segmentation. IEEE Trans Med Imaging. 2004;23(2):256–64.
Article
Google Scholar
Lu S. Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging. 2011;30(12):2126–33.
Article
Google Scholar
Maheshwari S, Pachori RB, Acharya UR. Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE J Biomed Health Inform. 2017;21(3):803–13.
Article
Google Scholar
Mittapalli PS, Kande GB. Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control. 2016;24:34–46.
Article
Google Scholar
Nuzzi R, Marolo P, Nuzzi A. The hub-and-spoke management of glaucoma. Front Neurosci. 2020;14:180.
Article
Google Scholar
Panda R, Puhan N, Panda G. New binary hausdorff symmetry measure based seeded region growing for retinal vessel segmentation. Biocybern Biomed Eng. 2016;36(1):119–29.
Article
Google Scholar
Panda R, Puhan NB, Rao A, Mandal B, Padhy D, Pandaa G. Deep convolutional neural network-based patch classification for retinal nerve fiber layer defect detection in early glaucoma. J Med Imaging. 2018;5(4):044003. https://doi.org/10.1117/1.JMI.5.4.044003.
Article
Google Scholar
Roychowdhury S, Koozekanani DD, Kuchinka SN, Parhi KK. Optic disc boundary and vessel origin segmentation of fundus images. IEEE J Biomed Health Inform. 2016;20(6):1562–74.
Article
Google Scholar
Sekhar S, Al-Nuaimy W, Nandi AK. Automated localisation of retinal optic disk using hough transform. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to macro; 2008. p. 1577–80.
Sevastopolsky A. Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network. Pattern Recognit Image Anal. 2017;27(3):618–24.
Article
Google Scholar
Shankaranarayana SM, Ram K, Mitra K, Sivaprakasam M. Fully convolutional networks for monocular retinal depth estimation and optic disc-cup segmentation. IEEE J Biomed Health Inform. 2019;23(4):1417–26.
Article
Google Scholar
Singh A, Dutta MK, ParthaSarathi M, Uher V, Burget R. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Comput Methods Programs Biomed. 2016;124:108–20.
Article
Google Scholar
Sivaswamy J, Chakravarty A, Joshi G, Tabish AS, Krishnadas S. A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed Imaging Data Pap. 2015;2(1):1004.
Google Scholar
Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, Tabish AUS. Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI); 2014. p. 53–6.
Wan L, Zeiler M, Zhang S, Cun YL, Fergus R. Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning, proceedings of machine learning research, 2013;28(3):1058–66.
Wong DWK, Liu J, Lim JH, Jia X, Yin F, Li H, Wong TY. Level-set based automatic cup-to-disc ratio determination using retinal fundus images in argali. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society; 2008. p. 2266–9.
Xu J, Chutatape O, Sung E, Zheng C, Kuan PCT. Optic disk feature extraction via modified deformable model technique for glaucoma analysis. Pattern Recognit. 2007;40(7):2063–76.
Article
Google Scholar
Xu Y, Duan L, Lin S, Chen X, Wong DWK, Wong TY, Liu J. Optic cup segmentation for glaucoma detection using low-rank superpixel representation. In: International conference on medical image computing and computer-assisted intervention 2014. p. 788–95.
Yin F, Liu J, Wong DWK, Tan NM, Cheng J, Cheng CY, Tham YC, Wong TY. Sector-based optic cup segmentation with intensity and blood vessel priors. In: Annual international conference of the IEEE engineering in medicine and biology society; 2012. p. 1454–7.
Yu S, Xiao D, Frost S, Kanagasingam Y. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imaging Graph. 2019;74:61–71.
Article
Google Scholar
Zhang Z, Yin FS, Liu J, Wong WK, Tan NM, Lee BH, Cheng J, Wong TY. ORIGA\(^{\text{-light}}\): an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual international conference of the IEEE engineering in medicine and biology; 2010. p. 3065–8.
Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph. 2017;55:28–41 (Special Issue on Ophthalmic Medical Image Analysis).