Pfeifer R, Lungarella M, Iida F. Self-organization, embodiment, and biologically inspired robotics. Science. 2007;318(5853):1088. http://science.sciencemag.org/content/318/5853/1088.abstract
Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015;521:467. https://doi.org/10.1038/nature14543.
Article
Google Scholar
Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Science Robotics. 2016;1(1). http://robotics.sciencemag.org/content/1/1/eaah3690.abstract
Martius G, Hostettler R, Knoll A, Der R. Compliant control for soft robots: emergent behavior of a tendon driven anthropomorphic arm. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS); 2016. p. 767–73. https://doi.org/10.1109/IROS.2016.7759138.
Gupta A, Eppner C, Levine S, Abbeel P. Learning dexterous manipulation for a soft robotic hand from human demonstrations. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS); 2016. p. 3786–93. https://doi.org/10.1109/IROS.2016.7759557.
Ishige M, Umedachi T, Taniguchi T, Kawahara Y. Learning oscillator-based gait controller for string-form soft robots using parameter-exploring policy gradients. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS); 2018. p. 6445–52. https://doi.org/10.1109/IROS.2018.8594338.
Hunt KJ, Sbarbaro D, Żbikowski R, Gawthrop PJ. Neural networks for control systems: a survey. Automatica. 1992;28(6):1083. https://doi.org/10.1016/0005-1098(92)90053-I.
MathSciNet
Article
MATH
Google Scholar
Jin L, Li S, Yu J, He J. Robot manipulator control using neural networks: a survey. Neurocomputing. 2018;285:23. https://doi.org/10.1016/j.neucom.2018.01.002.
Article
Google Scholar
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436. https://doi.org/10.1038/nature14539.
Article
Google Scholar
Pierson HA, Gashler MS. Deep learning in robotics: a review of recent research. Adv Robot. 2017;31(16):821. https://doi.org/10.1080/01691864.2017.1365009.
Article
Google Scholar
Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference
on machine learning (ICML); 2010. p. 807–14. https://doi.org/10.5555/3104322.3104425.
Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing; 2013.
He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. CoRR arXiv:1502.01852 (2015).
Nguyen-Tuong D, Peters J. Model learning for robot control: a survey. Cogn Process. 2011;12(4):319. https://doi.org/10.1007/s10339-011-0404-1.
Article
Google Scholar
Peters J, Schaal S. Reinforcement learning of motor skills with policy gradients. Neural Netw. 2008;21(4):682. https://doi.org/10.1016/j.neunet.2008.02.003.
Article
Google Scholar
Gaeta M, Loia V, Miranda S, Tomasiello S. Fitted Q-iteration by functional networks for control problems. Appl Math Model. 2016;40(21):9183. https://doi.org/10.1016/j.apm.2016.05.049.
MathSciNet
Article
MATH
Google Scholar
Bruin T, Kober J, Tuyls K, Babuška R. Improved deep reinforcement learning for robotics through distribution-based experience retention. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS); 2016. p. 3947–52. https://doi.org/10.1109/IROS.2016.7759581.
Gu S, Holly E, Lillicrap T, Levine S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE international conference on robotics and automation (ICRA); 2017. p. 3389–96. https://doi.org/10.1109/ICRA.2017.7989385.
Haarnoja T, Pong V, Zhou A, Dalal M, Abbeel P, Levine S. Composable deep reinforcement learning for robotic manipulation. In: 2018 IEEE international conference on robotics and automation (ICRA); 2018. p. 6244–51. https://doi.org/10.1109/ICRA.2018.8460756.
Stulp F, Sigaud O. Path integral policy improvement with covariance matrix adaptation. In: Proceedings of the 29th international conference on international conference on machine learning (ICML); 2012. p. 1547–54. https://doi.org/10.5555/3042573.3042771.
Stulp F, Oudeyer PY. Adaptive exploration through covariance matrix adaptation enables developmental motor learning. Paladyn. 2012;3(3):128. https://doi.org/10.2478/s13230-013-0108-6.
Article
Google Scholar
Nguyen-Tuong D, Peters J, Seeger M, Schölkopf B. Learning inverse dynamics: a comparison. In: Advances in computational intelligence and learning: proceedings of the European symposium on artificial neural networks (ESANN); 2008. p. 13–8.
Sigaud O, Salaün C, Padois V. On-line regression algorithms for learning mechanical models of robots: a survey. Robot Auton Syst. 2011;59(12):1115. https://doi.org/10.1016/j.robot.2011.07.006.
Article
Google Scholar
Schaal S, Atkeson CG, Vijayakumar S. Real-time robot learning with locally weighted statistical learning. In: IEEE international conference on robotics and automation (ICRA); 2000. p. 288–93. https://doi.org/10.1109/ROBOT.2000.844072.
Nguyen-Tuong D, Seeger M, Peters J. Model learning with local Gaussian process regression. Adv Robot. 2009;23(15):2015. https://doi.org/10.1163/016918609X12529286896877.
Article
Google Scholar
Miyamoto H, Kawato M, Setoyama T, Suzuki R. Feedback-error-learning neural network for trajectory control of a robotic manipulator. Neural Netw. 1988;1(3):251. https://doi.org/10.1016/0893-6080(88)90030-5.
Article
Google Scholar
Katayama M, Kawato M. Learning trajectory and force control of an artificial muscle arm by parallel-hierarchical neural network model. In: Advances in neural information processing systems; 1990. p. 436–42. https://proceedings.neurips.cc/paper/1990/file/3fe94a002317b5f9259f82690aeea4cd-Paper.pdf.
Waegeman T, wyffels F, Schrauwen B. Feedback control by online learning an inverse model. IEEE Trans Neural Netw Learn Syst. 2012;23(10):1637. https://doi.org/10.1109/TNNLS.2012.2208655.
Article
Google Scholar
Settles B. Synthesis lectures on artificial intelligence and machine learning. Act Learn. 2012;6(1):1.
Google Scholar
Jordan MI, Rumelhart DE. Forward models: supervised learning with a distal teacher. Cogn Sci. 1992;16(3):307. https://doi.org/10.1016/0364-0213(92)90036-T.
Article
Google Scholar
Dearden A, Demiris Y. Learning forward models for robots. In: Proceedings of the 19th international joint conference on artificial intelligence (IJCAI); 2005. p. 1440–5. https://doi.org/10.5555/1642293.1642521.
Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11(7):1317. https://doi.org/10.1016/S0893-6080(98)00066-5.
Article
Google Scholar
Haruno M, Wolpert DM, Kawato M. Multiple paired forward-inverse models for human motor learning and control. Adv Neural Inform Process Syst. 1999;11:31–7.
Google Scholar
Lambert A, Shaban A, Raj A, Liu Z, Boots B. Deep forward and inverse perceptual models for tracking and prediction. In: 2018 IEEE international conference on robotics and automation (ICRA); 2018. p. 675–82. https://doi.org/10.1109/ICRA.2018.8461050.
Polydoros AS, Nalpantidis L. Survey of model-based reinforcement learning: applications on robotics. J Intell Robot Syst. 2017;86(2):153. https://doi.org/10.1007/s10846-017-0468-y.
Article
Google Scholar
Hester T, Quinlan M, Stone P. RTMBA: a real-time model-based reinforcement learning architecture for robot control. In: 2012 IEEE international conference on robotics and automation (ICRA); 2012. p. 85–90. https://doi.org/10.1109/ICRA.2012.6225072.
Martínez D, Alenyà G, Torras C. Safe robot execution in model-based reinforcement learning. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS); 2015, p. 6422–7. https://doi.org/10.1109/IROS.2015.7354295.
Watter M, Springenberg J, Boedecker J, Riedmiller M. Embed to control: a locally linear latent dynamics model for control from raw images. In: Proceedings of the 28th international conference on neural information processing systems, vol. 2; 2015. p. 2746–54. https://doi.org/10.5555/2969442.2969546.
Nagabandi A, Kahn G, Fearing RS, Levine S. Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning. In: 2018 IEEE international conference on robotics and automation (ICRA); 2018. p. 7559–66. https://doi.org/10.1109/ICRA.2018.8463189.
Soloway D, Haley PJ. Neural generalized predictive control. In: Proceedings of the 1996 IEEE international symposium on intelligent control; 1996. p. 277–82. https://doi.org/10.1109/ISIC.1996.556214.
Akesson B, Toivonen H. A neural network model predictive controller. J Process Control. 2006;16(9):937. https://doi.org/10.1016/j.jprocont.2006.06.001.
Article
Google Scholar
Kashima K. Nonlinear model reduction by deep autoencoder of noise response data. In: 2016 IEEE 55th conference on decision and control (CDC); 2016. p. 5750–5. https://doi.org/10.1109/CDC.2016.7799153.
Wang M, Li HX, Shen W. Deep auto-encoder in model reduction of lage-scale spatiotemporal dynamics. In: 2016 international joint conference on neural networks (IJCNN); 2016. p. 3180–6. https://doi.org/10.1109/IJCNN.2016.7727605.
Lenz I, Knepper RA, Saxena A. DeepMPC: learning deep latent features for model predictive control. In: Robotics: science and systems (RSS); 2015. https://doi.org/10.15607/rss.2015.xi.012.
Takahara K, Ikemoto S, Hosoda K. Reconstructing state-space from movie using convolutional autoencoder for robot control. In: The 15th international conference on intelligent autonomous systems (IAS), vol. 15; 2015. p. 480–9. https://doi.org/10.1007/978-3-030-01370-7_38.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR); 2016. p. 770–8. https://doi.org/10.1109/CVPR.2016.90.