Skip to main content
Log in

Strup: Stress-Based Trust Prediction in Weighted Sign Networks

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Trust/distrust networks in social media are called weighted sign networks, in which edges are labeled with real numbers. An algorithm is proposed in this paper to improve trust prediction in WSNs by using local variables. Our algorithm, Strup, predicts the sign of edges through computing the stress of related nodes. Four new parameters are introduced to demonstrate the stress of nodes in the networks and to predict the sign of edges accurately. Considering these signs leads to more precise trust prediction. The experiment on four real-world WSNs showed that our proposed approach can easily combine with most of the existing weight prediction algorithms to improve them. Due to the tight relation between trust prediction and (opinion and emotion) prediction, we believe that our stress-based algorithm could be a promising solution in their challenging domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agrawal P, Garg VK, Narayanam R. Link label prediction in signed social networks. In: Twenty-third international joint conference on artificial intelligence; 2013. p 2591–97.

  2. Ai J, Liu Y, Su Z, Zhang H, Zhao F. Link prediction in recommender systems based on multi-factor network modeling and community detection. EPL (Europhys Lett). 2019;126(3):38003.

    Article  Google Scholar 

  3. Akilal K, Slimani H, Omar M. A very fast and robust trust inference algorithm in weighted signed social networks using controversy, eclecticism, and reciprocity. Comput Secur. 2019;83:68–78.

    Article  Google Scholar 

  4. Alstott J, Bullmore E, Plenz D. powerlaw: a python package for analysis of heavy-tailed distributions. PLoS One. 2014;9(1):e85777.

    Article  Google Scholar 

  5. Bradley AP. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997;30(7):1145–59.

    Article  Google Scholar 

  6. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  7. Chen X, Guo JF, Pan X, Zhang C. Link prediction in signed networks based on connection degree. J Ambient Intell Humaniz Comput. 2019;10(5):1747–57.

    Article  Google Scholar 

  8. Cui Y, Liu Y, Hu J, Li H. A survey of link prediction in information networks. In: 2018 IEEE international conference on smart internet of things (SmartIoT). IEEE; 2018. p. 29–33.  https://doi.org/10.1109/SmartIoT.2018.00015.

  9. Derr T, Aggarwal C, Tang J. Signed network modeling based on structural balance theory. In: Proceedings of the 27th ACM international conference on information and knowledge management. New York, NY, USA, CIKM ’18: Association for Computing Machinery; 2018. p. 557–66.

    Chapter  Google Scholar 

  10. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–39.

    Article  MathSciNet  Google Scholar 

  11. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.

    Article  MathSciNet  Google Scholar 

  12. Gilbert E. Predicting tie strength in a new medium. In: Proceedings of the SIGCHI conference on human factors in computing systems. New York, NY, USA, CSCW ’12: Association for Computing Machinery; 2012. p. 1047–56.

    Google Scholar 

  13. Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst. 2018;151:78–94.

    Article  Google Scholar 

  14. Hastie T, Rosset S, Zhu J, Zou H. Multi-class adaboost. Stat Interface. 2009;2(3):349–60.

    Article  MathSciNet  Google Scholar 

  15. Heider F. Attitudes and cognitive organization. J Psychol. 1946;21(1):107–12.

    Article  Google Scholar 

  16. Hutto CJ, Gilbert E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In: Eighth international conference on weblogs and social media (ICWSM-14); 2014.

  17. Kumar S, Spezzano F, Subrahmanian V, Faloutsos C. Edge weight prediction in weighted signed networks. In: 2016 IEEE 16th international conference on data mining (ICDM). IEEE; 2016. p. 221–30. https://doi.org/10.1109/ICDM.2016.0033.

  18. Kumar S, Hooi B, Makhija D, Kumar M, Faloutsos C, Subrahmanian V. Rev2: Fraudulent user prediction in rating platforms. In: Proceedings of the eleventh ACM international conference on web search and data mining. New York, NY, USA, WSDM ’18: Association for Computing Machinery; 2018. p. 333–41.

    Chapter  Google Scholar 

  19. Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media. In: Proceedings of the SIGCHI conference on human factors in computing systems. New York, NY, USA, CHI ’10: Association for Computing Machinery; 2010. p. 1361–70.

  20. Li X, Chen H. Recommendation as link prediction in bipartite graphs: a graph kernel-based machine learning approach. Decis Support Syst. 2013;54(2):880–90.

    Article  Google Scholar 

  21. Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. J Am Soc Inf Sci Technol. 2007;58(7):1019–31.

    Article  Google Scholar 

  22. Lohr S. The age of big data. New York Times. 2012;11(2012).

  23. Lü L, Zhou T. Link prediction in complex networks: a survey. Phys Stat Mech Appl. 2011;390(6):1150–70.

    Article  Google Scholar 

  24. Mishra A, Bhattacharya A. Finding the bias and prestige of nodes in networks based on trust scores. In: Proceedings of the 20th international conference on World wide web. ACM; 2011. p. 567–576. https://doi.org/10.1145/1963405.1963485.

  25. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.

    MathSciNet  MATH  Google Scholar 

  26. Samanta S, Pal M. Link prediction in social networks. In: Graph theoretic approaches for analyzing large-scale social networks. IGI Global; 2018. p. 164–172. https://doi.org/10.4018/978-1-5225-2814-2.ch010.

  27. Shen P, Liu S, Wang Y, Han L. Unsupervised negative link prediction in signed social networks. Math Probl Eng. 2019;2019:1–15.

    Google Scholar 

  28. Song D, Meyer DA. Link sign prediction and ranking in signed directed social networks. Soc Netw Anal Min. 2015;5(1):52.

    Article  Google Scholar 

  29. Tang J, Gao H, Liu H. mTrust: discerning multi-faceted trust in a connected world. In: Proceedings of the fifth ACM international conference on Web search and data mining. New York, NY, USA, WSDM ’12: Association for Computing Machinery; 2012. p. 93–102.  

    Chapter  Google Scholar 

  30. Tang J, Gao H, Liu H, Das Sarma A. Etrust: understanding trust evolution in an online world. 2012. https://doi.org/10.1145/2339530.2339574.

  31. Tang J, Chang S, Aggarwal C, Liu H. Negative link prediction in social media. In: Proceedings of the eighth ACM international conference on web search and data mining. New York, NY, USA: Association for Computing Machinery; 2015. p. 87–96.

    Chapter  Google Scholar 

  32. Tang J, Chang Y, Aggarwal C, Liu H. A survey of signed network mining in social media. ACM Comput Surv (CSUR). 2016;49(3):42.

    Article  Google Scholar 

  33. Zadrozny B, Elkan C. Transforming classifier scores into accurate multiclass probability estimates. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. New York, NY, USA, KDD ’02: Association for Com-puting Machinery; 2002. p 694–99.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fattaneh Taghiyareh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, P.T., Taghiyareh, F. Strup: Stress-Based Trust Prediction in Weighted Sign Networks. SN COMPUT. SCI. 2, 8 (2021). https://doi.org/10.1007/s42979-020-00388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00388-5

Keywords

Navigation