Skip to main content
Log in

Vehicular Perception Based on Inertial Sensing: A Structured Mapping of Approaches and Methods

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

In this paper, we present a structured literature mapping of the state-of-the-art of vehicular perception methods and approaches using inertial sensors. An in-depth investigation and classification were performed employing the results of a systematic literature review. The analysis focused on identifying methods that capture signals provided by inertial sensors such as accelerometers and gyroscopes to recognize transient or persistent events associated with the vehicle’s movement. We classified these events into vehicular exteroception, associated with potholes, cracks, speed bumps, pavement type, conservation state; and vehicular proprioception, associated with lane change, braking, skidding, aquaplaning, turning right or left. Through the comprehensive study of publications in a 7-year time window, in addition to the methods, we have also identified their dependency factors, hardware platforms and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Afrin M, Mahmud MR, Razzaque MA. Real time detection of speed breakers and warning system for on-road drivers. In: 2015 IEEE international WIE conference on electrical and computer engineering (WIECON-ECE). Dhaka; 2015. p. 495–498. https://doi.org/10.1109/WIECON-ECE.2015.7443976.

  2. Akhtar N, Pandey K, Gupta S. Mobile application for safe driving. In: 2014 fourth international conference on communication systems and network technologies. Bhopal; 2014. p. 212–216. https://doi.org/10.1109/CSNT.2014.49.

  3. Allouch A, Koubâa A, Abbes T, Ammar A. Roadsense: smartphone application to estimate road conditions using accelerometer and gyroscope. IEEE Sens J. 2017;17(13):4231–8. https://doi.org/10.1109/JSEN.2017.2702739.

    Article  Google Scholar 

  4. Alqudah YA, Sababha BH. A statistical approach to estimating driving events by a smartphone. In: 2016 international conference on computational science and computational intelligence (CSCI). Las Vegas, NV; 2016. p. 1021–1025. https://doi.org/10.1109/CSCI.2016.0195.

  5. Andria G, Attivissimo F, Nisio AD, Lanzolla A, Pellegrino A. Development of an automotive data acquisition platform for analysis of driving behavior. Measurement. 2016;93:278–87. https://doi.org/10.1016/j.measurement.2016.07.035.

    Article  Google Scholar 

  6. Arroyo C, Bergasa LM, Romera E. Adaptive fuzzy classifier to detect driving events from the inertial sensors of a smartphone. In: 2016 IEEE 19th international conference on intelligent transportation systems (ITSC). Rio de Janeiro; 2016. p. 1896–1901. https://doi.org/10.1109/ITSC.2016.7795863.

  7. Astarita V, Caruso MV, Danieli G, Festa DC, Giofrè VP, Iuele T, Vaiana R. A mobile application for road surface quality control: uniqualroad. Procedia Soc Behav Sci. 2012;54:1135–44. https://doi.org/10.1016/j.sbspro.2012.09.828 (Proceedings of EWGT2012 - 15th Meeting of the EURO Working Group on Transportation, September 2012, Paris).

    Article  Google Scholar 

  8. Astarita V, Festa DC, Mongelli DWE, Tassitani A. New methodology for the identification of road surface anomalies. In: Proceedings of 2014 IEEE international conference on service operations and logistics, and informatics. Qingdao; 2014. p. 149–154. https://doi.org/10.1109/SOLI.2014.6960710.

  9. Beeby S. MEMS Mechanical Sensors. Artech House: Artech House Microelectromechanical Systems; 2004.

    Google Scholar 

  10. Bello-Salau H, Aibinu A, Onumanyi A, Onwuka E, Dukiya J, Ohize H. New road anomaly detection and characterization algorithm for autonomous vehicles. Appl Comput Inform. 2018;. https://doi.org/10.1016/j.aci.2018.05.002.

    Article  Google Scholar 

  11. Biolchini J, Mian PG, Natali ACC, Travassos GH. Systematic review in software engineering. System Engineering and Computer Science Department COPPE/UFRJ. Tech Rep ES. 2005;679(05):45.

    Google Scholar 

  12. Bose B, Dutta J, Ghosh S, Pramanick P, Roy S. Smartphone based system for real-time aggressive driving detection and marking rash driving-prone areas. In: Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking, Workshops ICDCN ’18. ACM, New York, NY, USA; 2018. p. 27:1–27:6. https://doi.org/10.1145/3170521.3170549.

  13. Braga N. Manual de Mecatrônica. Editora NCB 2017.

  14. Brunauer R, Rehrl K. Supporting road maintenance with in-vehicle data: Results from a field trial on road surface condition monitoring. In: 2016 IEEE 19th international conference on intelligent transportation systems (ITSC). Rio de Janeiro; 2016. p. 2236–2241. https://doi.org/10.1109/ITSC.2016.7795917.

  15. Chen K, Lu M, Tan G, Wu J. Crsm: Crowdsourcing based road surface monitoring. In: 2013 IEEE 10th international conference on high performance computing and communications 2013 IEEE international conference on embedded and ubiquitous computing. Zhangjiajie; 2013. p. 2151–2158. https://doi.org/10.1109/HPCC.and.EUC.2013.308.

  16. Choudhary AK, Ingole PK. Smart phone based approach to monitor driving behavior and sharing of statistic. In: 2014 fourth international conference on communication systems and network technologies. Bhopal; 2014. p. 279–282. https://doi.org/10.1109/CSNT.2014.61.

  17. Douangphachanh V, Oneyama H. Estimation of road roughness condition from smartphones under realistic settings. In: 2013 13th international conference on ITS telecommunications (ITST). Tampere; 2013. p. 433–439. https://doi.org/10.1109/ITST.2013.6685585.

  18. Douangphachanh V, Oneyama H. Exploring the use of smartphone accelerometer and gyroscope to study on the estimation of road surface roughness condition. In: 2014 11th international conference on informatics in control, automation and robotics (ICINCO). Vienna; vol. 01, 2014. p. 783–787. https://doi.org/10.5220/0005117407830787.

  19. Eftekhari HR, Ghatee M. Hybrid of discrete wavelet transform and adaptive neuro fuzzy inference system for overall driving behavior recognition. Transport Res Part F Traffic Psychol Behav. 2018;58:782–96. https://doi.org/10.1016/j.trf.2018.06.044.

    Article  Google Scholar 

  20. El-Wakeel AS, Li J, Noureldin A, Hassanein HS, Zorba N. Towards a practical crowdsensing system for road surface conditions monitoring. IEEE Internet Things J. 2018;5(6):4672–85. https://doi.org/10.1109/JIOT.2018.2807408.

    Article  Google Scholar 

  21. Fouad MM, Mahmood MA, Mahmoud H, Mohamed A, Hassanien AE. Intelligent road surface quality evaluation using rough mereology. In: 2014 14th international conference on hybrid intelligent systems. Kuwait; 2014. p. 18–22. https://doi.org/10.1109/HIS.2014.7086163.

  22. Gawad SMA, El Mougy A, El-Meligy MA. Dynamic mapping of road conditions using smartphone sensors and machine learning techniques. In: 2016 IEEE 84th vehicular technology conference (VTC-Fall). Montreal, QC; 2016. p. 1–5. https://doi.org/10.1109/VTCFall.2016.7880972.

  23. Ghadge M, Pandey D, Kalbande D. Machine learning approach for predicting bumps on road. In: 2015 international conference on applied and theoretical computing and communication technology (iCATccT). Davangere; 2015. p. 481–485. https://doi.org/10.1109/ICATCCT.2015.7456932.

  24. Groves P. Principles of GNSS, inertial, and multisensor integrated navigation systems. 2nd ed. Artech House: GNSS/GPS; 2013.

    MATH  Google Scholar 

  25. Gueta LB, Sato A. Classifying road surface conditions using vibration signals. In: 2017 Asia-Pacific signal and information processing Association Annual Summit and Conference (APSIPA ASC). Kuala Lumpur; 2017. p. 039–043. https://doi.org/10.1109/APSIPA.2017.8281999.

  26. Gunawan FE, Soewito B. A vibratory-based method for road damage classification. In: 2015 international seminar on intelligent technology and its applications (ISITIA). Surabaya; 2015. p. 1–4. https://doi.org/10.1109/ISITIA.2015.7219943.

  27. Găvrută A, Marcu M, Bogdan R. Software solution for monitoring and analyzing driver behavior. In: 2018 IEEE 12th international symposium on applied computational intelligence and informatics (SACI). Timisoara; 2018. p. 000345–000350. https://doi.org/10.1109/SACI.2018.8440948.

  28. Hou Y, Gupta A, Guan T, Hu S, Su L, Qiao C. Vehsense: slippery road detection using smartphones. In: 2017 IEEE 85th vehicular technology conference (VTC Spring). Sydney, NSW; 2017. p. 1–5. https://doi.org/10.1109/VTCSpring.2017.8108301.

  29. Hsu Y, Perng J, Wu Z. Design and implementation of an intelligent road detection system with multisensor integration. In: 2016 international conference on machine learning and cybernetics (ICMLC). Jeju; vol. 1, 2016. p. 219–225. https://doi.org/10.1109/ICMLC.2016.7860904.

  30. Jamakhandi HA, Srinivasa KG. Internet of things based real time mapping of road irregularities. In: International conference on circuits, communication, control and computing. Bangalore; 2014. p. 448–451. https://doi.org/10.1109/CIMCA.2014.7057842.

  31. Jang J, Smyth AW, Yang Y, Cavalcanti D. Road surface condition monitoring via multiple sensor-equipped vehicles. In: 2015 IEEE conference on computer communications workshops (INFOCOM WKSHPS). Hong Kong; 2015. p. 43–44. https://doi.org/10.1109/INFCOMW.2015.7179334.

  32. Kaur V, Tyagi A, Kritika M, Kumari P, Salvi S. Crowd-sourcing based android application for structural health monitoring and data analytics of roads using cloud computing. In: 2017 international conference on innovative mechanisms for industry applications (ICIMIA). Bangalore; 2017. p. 354–358. https://doi.org/10.1109/ICIMIA.2017.7975635.

  33. Kempe V. Inertial MEMS: principles and practice. Cambridge: Cambridge University Press; 2011.

    Book  Google Scholar 

  34. Khaleghian S, Taheri S. Terrain classification using intelligent tire. J Terramech. 2017;71:15–24. https://doi.org/10.1016/j.jterra.2017.01.005.

    Article  Google Scholar 

  35. Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature reviews in software engineering: a systematic literature review. Inf Softw Technol. 2009;51(1):7–15. https://doi.org/10.1016/j.infsof.2008.09.009 (Special Section-Most Cited Articles in 2002 and Regular Research Papers).

    Article  Google Scholar 

  36. Kumar GA, Kumar AS, Kumar AA, Maharajothi T. Road quality management system using mobile sensors. In: 2017 international conference on innovations in information, embedded and communication systems (ICIIECS). Coimbatore; 2017. p. 1–6. https://doi.org/10.1109/ICIIECS.2017.8276014.

  37. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436.

    Article  Google Scholar 

  38. Li F, Zhang H, Che H, Qiu X. Dangerous driving behavior detection using smartphone sensors. In: 2016 IEEE 19th international conference on intelligent transportation systems (ITSC). Rio de Janeiro; 2016. p. 1902–1907. https://doi.org/10.1109/ITSC.2016.7795864.

  39. Li X, Goldberg DW. Toward a mobile crowdsensing system for road surface assessment. Comput Environ Urban Syst. 2018;69:51–62. https://doi.org/10.1016/j.compenvurbsys.2017.12.005.

    Article  Google Scholar 

  40. Lima LC, Amorim VJP, Pereira IM, Ribeiro FN, Oliveira RAR. Using crowdsourcing techniques and mobile devices for asphaltic pavement quality recognition. In: 2016 VI Brazilian symposium on computing systems engineering (SBESC). Joao Pessoa; 2016. p. 144–149. https://doi.org/10.1109/SBESC.2016.029.

  41. Harikrishnan M, Gopi VP. Vehicle vibration signal processing for road surface monitoring. IEEE Sens J. 2017;17(16):5192–7. https://doi.org/10.1109/JSEN.2017.2719865.

    Article  Google Scholar 

  42. Mahboob S, Iqbal K, Farman H, Khan MY, Wasi S. Drive pattern analyzer using smartphones. In: 2017 13th international conference on emerging technologies (ICET); 2017. p. 1–5. https://doi.org/10.1109/ICET.2017.8281659.

  43. Mathew TV. Transportation systems engineering: intrusive technologies; 2014.

  44. Mathew TV. Transportation systems engineering: non-intrusive technologies; 2014.

  45. Matilainen M, Tuononen A. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer. Mech Syst Signal Process. 2015;52–53:548–58. https://doi.org/10.1016/j.ymssp.2014.08.002.

    Article  Google Scholar 

  46. Menegazzo J, Von Wangenheim A. Vehicular perception and proprioception based on inertial sensing: a systematic review. Tech. rep., Federal University of Santa Catarina-Brazilian Institute for Digital Convergence; 2018. https://doi.org/10.13140/RG.2.2.20113.07525.

  47. Müller M. Information retrieval for music and motion. Berlin: Springer; 2007.

    Book  Google Scholar 

  48. Nalavde R, Surve A. Driver assistant services using ubiquitous smartphone. In: 2015 international conference on communications and signal processing (ICCSP). Melmaruvathur; 2015. p. 0430–0434. https://doi.org/10.1109/ICCSP.2015.7322924.

  49. Niskanen AJ, Tuononen AJ. Accelerometer tyre to estimate the aquaplaning state of the tyre-road contact. In: 2015 IEEE intelligent vehicles symposium (IV). Seoul; 2015. p. 343–348. https://doi.org/10.1109/IVS.2015.7225709.

  50. Orhan F, Eren PE. Road hazard detection and sharing with multimodal sensor analysis on smartphones. In: 2013 seventh international conference on next generation mobile apps, services and technologies. Prague; 2013. p. 56–61. https://doi.org/10.1109/NGMAST.2013.19.

  51. Pholprasit T, Choochaiwattana W, Saiprasert C. A comparison of driving behaviour prediction algorithm using multi-sensory data on a smartphone. In: 2015 IEEE/ACIS 16th international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD). Takamatsu; 2015. p. 1–6. https://doi.org/10.1109/SNPD.2015.7176249.

  52. Pitoňák M, Filipovsky J. Gpr application: non-destructive technology for verification of thicknesses of newly paved roads in slovakia. Procedia Eng. 2016;153:537–49. https://doi.org/10.1016/j.proeng.2016.08.184 (XXV Polish-Russian-Slovak Seminar Theoretical Foundation of Civil Engineering).

    Article  Google Scholar 

  53. Pooja PR, Hariharan B. An early warning system for traffic and road safety hazards using collaborative crowd sourcing. In: 2017 international conference on communication and signal processing (ICCSP). Chennai; 2017. p. 1203–1206. https://doi.org/10.1109/ICCSP.2017.8286570.

  54. Prapulla SB, Rao SN, Herur VA. Road quality analysis and mapping for faster and safer travel. In: 2017 international conference on energy, communication, data analytics and soft computing (ICECDS). Chennai; 2017. p. 2487–2490. https://doi.org/10.1109/ICECDS.2017.8389899.

  55. Rishiwal V, Khan H. Automatic pothole and speed breaker detection using android system. In: 2016 39th international convention on information and communication technology, electronics and microelectronics (MIPRO). Opatija; 2016. p. 1270–1273. https://doi.org/10.1109/MIPRO.2016.7522334.

  56. Saiprasert C, Thajchayapong S, Pholprasit T, Tanprasert C. Driver behaviour profiling using smartphone sensory data in a v2i environment. In: 2014 international conference on connected vehicles and expo (ICCVE). Vienna; 2014. p. 552–557. https://doi.org/10.1109/ICCVE.2014.7297609.

  57. Saleh K, Hossny M, Nahavandi S. Driving behavior classification based on sensor data fusion using lstm recurrent neural networks. In: 2017 IEEE 20th international conference on intelligent transportation systems (ITSC). Yokohama; 2017. p. 1–6. https://doi.org/10.1109/ITSC.2017.8317835.

  58. Sattar S, Li S, Chapman M. Road surface monitoring using smartphone sensors: a review. Sensors. 2018;18(11):3845. https://doi.org/10.3390/s18113845.

    Article  Google Scholar 

  59. Savera A, Zia A, Edhi MS, Tauseen M, Shamsi JA. Bumpster: A mobile cloud computing system for speed breakers and ditches. In: 2016 IEEE 41st conference on local computer networks workshops (LCN Workshops). Dubai; 2016. p. 65–71. https://doi.org/10.1109/LCN.2016.030.

  60. Selmanaj D, Corno M, Savaresi SM. Accelerometer-based data-driven hazard detection and classification for motorcycles. In: 2014 European control conference (ECC). Strasbourg; 2014. p. 1687–1692. https://doi.org/10.1109/ECC.2014.6862549.

  61. Sharma H, Naik S, Jain A, Raman RK, Reddy RK, Shet RB. S-road assist: road surface conditions and driving behavior analysis using smartphones. In: 2015 international conference on connected vehicles and expo (ICCVE). Shenzhen; 2015. p. 291–296. https://doi.org/10.1109/ICCVE.2015.61.

  62. Singh G, Bansal D, Sofat S, Aggarwal N. Smart patrolling: an efficient road surface monitoring using smartphone sensors and crowdsourcing. Pervasive Mob Comput. 2017;40:71–88. https://doi.org/10.1016/j.pmcj.2017.06.002.

    Article  Google Scholar 

  63. Singh V, Chander D, Chhaparia U, Raman B. Safestreet: an automated road anomaly detection and early-warning system using mobile crowdsensing. In: 2018 10th international conference on communication systems networks (COMSNETS). Bengaluru; 2018. p. 549–552. https://doi.org/10.1109/COMSNETS.2018.8328270.

  64. Souza VM. Asphalt pavement classification using smartphone accelerometer and complexity invariant distance. Eng Appl Artif Intell. 2018;74:198–211. https://doi.org/10.1016/j.engappai.2018.06.003.

    Article  Google Scholar 

  65. Strutu M, Stamatescu G, Popescu D. A mobile sensor network based road surface monitoring system. In: 2013 17th international conference on system theory, control and computing (ICSTCC). Sinaia; 2013. p. 630–634. https://doi.org/10.1109/ICSTCC.2013.6689030.

  66. Tomiyama K, Kawamura A. Application of lifting wavelet transform for pavement surface monitoring by use of a mobile profilometer. Int J Pavement Res Technol. 2016;9(5):345–53. https://doi.org/10.1016/j.ijprt.2016.08.007.

    Article  Google Scholar 

  67. Vittorio A, Rosolino V, Teresa I, Vittoria CM, Vincenzo PG, Francesco DM. Automated sensing system for monitoring of road surface quality by mobile devices. Procedia Soc Behav Sci. 2014;111:242–51. https://doi.org/10.1016/j.sbspro.2014.01.057 (Transportation: Can we do more with less resources? - 16th Meeting of the Euro Working Group on Transportation - Porto 2013).

    Article  Google Scholar 

  68. Vlahogianni EI, Barmpounakis EN. Driving analytics using smartphones: algorithms, comparisons and challenges. Transport Res Part C Emerg Technol. 2017;79:196–206. https://doi.org/10.1016/j.trc.2017.03.014.

    Article  Google Scholar 

  69. Wang H, Huo N, Li J, Wang K, Wang Z. A road quality detection method based on the mahalanobis-taguchi system. IEEE Access. 2018;6:29078–87. https://doi.org/10.1109/ACCESS.2018.2839765.

    Article  Google Scholar 

  70. Wickramarathne T, Garg V, Bauer P. On the use of 3-d accelerometers for road quality assessment. In: 2018 IEEE 87th vehicular technology conference (VTC Spring). Porto; 2018, p. 1–5. https://doi.org/10.1109/VTCSpring.2018.8417779.

  71. Wu B, Chen Y, Yeh C, Li Y. Reasoning-based framework for driving safety monitoring using driving event recognition. IEEE Trans Intell Transport Syst. 2013;14(3):1231–41. https://doi.org/10.1109/TITS.2013.2257759.

    Article  Google Scholar 

  72. Wu X, Zhou J, An J, Yang Y. Abnormal driving behavior detection for bus based on the Bayesian classifier. In: 2018 tenth international conference on advanced computational intelligence (ICACI). Xiamen; 2018; p. 266–272. https://doi.org/10.1109/ICACI.2018.8377618.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeferson Menegazzo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Summary Data

Appendix 1: Summary Data

Table 8 Data collection information for exteroception
Table 9 Preprocessing for exteroception
Table 10 Processing for exteroception
Table 11 Data collection information for proprioception
Table 12 Preprocessing for proprioception
Table 13 Processing for proprioception

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menegazzo, J., von Wangenheim, A. Vehicular Perception Based on Inertial Sensing: A Structured Mapping of Approaches and Methods. SN COMPUT. SCI. 1, 255 (2020). https://doi.org/10.1007/s42979-020-00275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00275-z

Keywords

Navigation