Skip to main content
Log in

Mining Urban Traffic Condition from Crowd-Sourced Data

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Traffic congestion is an inherent and hard issue to be tackled in huge urban areas, particularly in developing countries where transportation infrastructures have not been grown well to fulfill speedy developing request demands. This paper proposes novel solutions to these issues by devising mobile crowd-sourcing based approaches to traffic estimation. A framework for effective collecting, integrating and analyzing traffic-related data shared by mobile crowds has been devised. Besides, essential issues on predicting traffic conditions at streets where real-time data is missed are also resolved by applying data mining techniques to historical data. A prototype system has been developed to validate the proposed solutions. The experimental results show the feasibility and the effectiveness of the proposed methods revealing that they are ready to be applied in the practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Quang T, Baharudin M, Kamioka E. Mc-tes: an efficient mobile phone based context-aware traffic state estimation framework. J Inf Process. 2013;21(1):76–9.

    Google Scholar 

  2. Minh QT, Pham-Nguyen HN, Tan HM, Long NX. Traffic congestion estimation based on crowd-sourced data. In: Proceedings of the 2019 International Conference on Advanced Computing and Applications (ACOMP). 2019. pp. 119–126.

  3. Quang T, Baharudin M, Kamioka E. Synergistic approaches to mobile intelligent transportation systems considering low penetration rate. Elsevier PMC. 2014;10(Part B):187–202.

    Google Scholar 

  4. D. of Traffic and Transportation. Road traffic portal, Ho Chi Minh City. http://giaothong.hochiminhcity.gov.vn/, 2019. Online; Accessed Apr 2019.

  5. Vu P T. Smart bk traffic. http://traffic.hcmut.edu.vn/index.html, 2019. Online; Accessed Apr 2019.

  6. Ndoye M, Totten V, Krogmeier J, Bullock D. Sensing and signal processing for vehicle reidentification and travel time estimation. IEEE Trans Intell Transp Syst. 2011;12(1):119–31.

    Article  Google Scholar 

  7. J. M. of Land Infrastructure and Transport. The system outline of vics. https://www.vics.or.jp/en/index.html, 2019. Online; Accessed May 2019.

  8. Estellés-Arolas E, González-Ladrón-de Guevara F. Towards an integrated crowdsourcing definition. J Inf Sci. 2012;38(2):189–200.

    Article  Google Scholar 

  9. Lease M, Yilmaz E. Crowdsourcing for information retrieval. SIGIR Forum. 2012;45(2):66–75.

    Article  Google Scholar 

  10. See L, Mooney P, Foody G, Bastin L, Comber A, Estima J, Fritz S, Kerle N, Jiang B, Laakso M, Liu H-Y, Milšinski G, Nikšič M, Painho M, Pődör A, Olteanu-Raimond A-M, Rutzinger M. Crowdsourcing, citizen science or volunteered geographic information? the current state of crowdsourced geographic information. ISPRS Int J Geo-Inf. 2016;5(55).

  11. Deanne B, Katharine H, Megan L, James OB. The use of crowd sourcing for gathering information about natural disasters. Risk Fronter. 2011;11(2):1–4.

    Google Scholar 

  12. Ushahidi, Ushahidi, read the crowd. http://www.ushahidi.com, 2018. Online; Accessed May 2019.

  13. Nguyen D-B, Dow C-R, Hwang S-F. An efficient traffic congestion monitoring system on internet of vehicles. Wirel Commun Mob Comput. 2018;2018:1–17.

    Google Scholar 

  14. Lewandowski M, Płaczek B, Bernas M, Szymała P. Road traffic monitoring system based on mobile devices and bluetooth low energy beacons. Wirel Commun Mob Comput. 2018;2018.

  15. Aissaoui R, Menouar H, Dhraief A, Filali F, Belghith A, Abu-Dayya A. Advanced real-time traffic monitoring system based on v2x communications. In: 2014 IEEE International Conference on Communications (ICC), 2014. pp. 2713–2718.

  16. Elloumi M, Dhaou R, Escrig B, Idoudi H, Saidane LA. Monitoring road traffic with a uav-based system. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018. pp. 1–6.

  17. de Almeida TT, Nacif JAM, Bhering FP, Júnior JGR. Doctrams: a decentralized and offline community-based traffic monitoring system. IEEE Trans Intell Transpo Syst. 2019;20(3):1160–9.

    Article  Google Scholar 

  18. Pham DT, Hoang BAM, Thanh SN, Nguyen H, Duong V. A constructive intelligent transportation system for urban traffic network in developing countries via gps data from multiple transportation modes. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015. pp. 1729–1734.

  19. Bayen A. Mobile millennium project. http://traffic.berkeley.edu/, 2019. Online; Accessed May 2019.

  20. Zhao Y, Zhang Y, Yu T, Liu T, Wang X, Tian X, Liu X. Citydrive: A map-generating and speed-optimizing driving system. In: IEEE INFOCOM 2014—IEEE Conference on Computer Communications, 2014. pp. 1986–1994.

  21. Zhao Y, Li S, Hu S, Su L, Yao S, Shao H, Wang H, Abdelzaher T. Greendrive: A smartphone-based intelligent speed adaptation system with real-time traffic signal prediction. In: 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), 2017. pp. 229–238.

  22. Ma Q, Zou Z, Ullah S. An approach to urban traffic condition estimation by aggregating gps data. Clus Comput. 2019;22:5421–34.

    Article  Google Scholar 

  23. Yamada Y, Shinkuma R, Sato T, Oki E. Feature-selection based data prioritization in mobile traffic prediction using machine learning. In: 2018 IEEE Global Communications Conference (GLOBECOM), 2018. pp. 1–6.

  24. Ganapathy J, Paramasivam J. Prediction of traffic volume by mining traffic sequences using travel time based prefixspan. IET Intell Transp Syst. 2019;13(7):1199–210.

    Article  Google Scholar 

  25. Zhang S, Kang Z, Zhang Z, Lin C, Wang C, Li J. A hybrid model for forecasting traffic flow: Using layerwise structure and markov transition matrix. IEEE Access. 2019;7:26002–12.

    Article  Google Scholar 

  26. Xie Z, Weifeng L, Huang S, Lu Z, Du B, Huang R. Sequential graph neural network for urban road traffic speed prediction. IEEE Access; 2019.

  27. Li L, Zhang J, Yang F, Ran B. Robust and flexible strategy for missing data imputation in intelligent transportation system. IET Intell Transp Syst. 2018;12(2):151–7.

    Article  Google Scholar 

  28. Sun B, Ma L, Cheng W, Wen W, Goswami P, Bai G. An improved k-nearest neighbours method for traffic time series imputation. In: 2017 Chinese Automation Congress (CAC), 2017. pp. 7346–7351.

  29. Pamuła T. Impact of data loss for prediction of traffic flow on an urban road using neural networks. IEEE Trans Intell Transp Syst. 2019;20(3):1000–9.

    Article  Google Scholar 

  30. Chen X, Zhang S, Li L, Li L. Adaptive rolling smoothing with heterogeneous data for traffic state estimation and prediction. IEEE Trans Intell Transp Syst. 2019;20(4):1247–58.

    Article  Google Scholar 

  31. Liu A, Li C, Yue W, Zhou X. Real-time traffic prediction: A novel imputation optimization algorithm with missing data. In: 2018 IEEE Global Communications Conference (GLOBECOM), 2018. pp. 1–7.

  32. Boukerche A, Siddiqui AJ, Mammeri A. Automated vehicle detection and classification: models, methods, and techniques. ACM Comput Surv. 2017;50(5):1–39.

    Article  Google Scholar 

  33. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. pp. 779–788.

  34. VoV, Road traffic channel fm 91mhz. http://vovgiaothong.vn/, 2019. Online; Accessed May 2019.

  35. VoH, Urban traffic channel fm 95.6mhz. http://voh.com.vn/thong-bao/kenh-giao-thong-do-thi-tren-lan-song-fm-95-6-mhz-cua-dai-tnnd-tphcm-111909.html, 2019. Online; Accessed May 2019.

  36. Openstreetmap. https://www.openstreetmap.org, 2019. Online; Accessed Feb. 2020.

  37. M. of Transport of Vietnam. Table of speed specifications for all drivers [online]. https://luatvietnam.vn/tin-phap-luat/bang-quy-dinh-ve-tocdo-toi-da-moi-tai-xe-can-nho-230-18150-article.html, 2018. Online; Accessed Apr. 2019.

  38. Google map. https://www.google.com/maps/@10.7984228,106.656438,15.51z/data=!5m1!1e1, 2019. Online; Accessed March. 2020.

  39. Here maps. https://wego.here.com/traffic/explore?map=10.79833,106.65405,16,traffic, 2019. Online; Accessed Mar 2020.

  40. TomTom I. Tomtom, inc. https://developer.tomtom.com/products/traffic-api. Online; Accessed Feb. 2020.

  41. Kathuria A. What’s new in yolo v3. https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b, 2020. Online; Accessed Feb 2020.

  42. JMeter A. Apache jmeter. https://jmeter.apache.org/. Online; Accessed Jun. 2019.

Download references

Acknowledgements

This research is funded by the Department of Science and Technology (DoST), Ho Chi Minh City, under grant number 34/2018/HD-QKHCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang Tran Minh.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Software Technology and Its Enabling Computing Platforms” guest edited by Lam-Son Lê and Michel Toulouse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai-Tan, H., Pham-Nguyen, HN., Long, N.X. et al. Mining Urban Traffic Condition from Crowd-Sourced Data. SN COMPUT. SCI. 1, 225 (2020). https://doi.org/10.1007/s42979-020-00244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00244-6

Keywords

Navigation