Skip to main content

Introduction to the Special Issue on the French–Polish Collaboration in Mathematical Models of Computer Systems, Networks and Bioinformatics

Abstract

On the occasion of the celebration in 2019 of the 100th anniversary of official French–Polish Scientific Collaboration, this paper explores the origins and outcomes of a scientific collaboration that we launched in the 1980s together with the late Professor Stefan Wȩgrzyn of the Polytechnic University of Silesia in Gliwice, Poland, Founding Director of the Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences, and Fellow of the Polish Academy of Sciences. We survey the themes of this long-standing collaboration, outline the work that was accomplished, and the reasons that resulted in these themes being at its core. We outline the main scientific outcomes, and discuss the current work and projects that relate to this exemplary Franco-Polish collaboration. Finally, we introduce the papers of this Special Issue in the light of these ongoing themes.

This is a preview of subscription content, access via your institution.

References

  1. Abadal G, Alda J, Agust J. Electromagnetic radiation energy harvesting the rectenna based approach. Rijeka: InTech Publishing; 2014. https://doi.org/10.5772/57118.

    Book  Google Scholar 

  2. Abdelrahman OH, Gelenbe E. Time and energy in team-based search. Phys Rev E. 2013;87:032125. https://doi.org/10.1103/PhysRevE.87.032125.

    Article  Google Scholar 

  3. Abdelrahman OH, Gelenbe E. Search in big networks and big data. In: Mityushev V, Ruzhansky MV, editors. Analytic methods in interdisciplinary applications. Springer proceedings in mathematics and statistics. Berlin: Springer; 2015.

    Google Scholar 

  4. Abdelrahman OH, Gelenbe E, Görbil g, Lent R., editors. Information sciences and systems 2015—30th international symposium on computer and information sciences, ISCIS 2015, London, UK, 21–24 September 2015, Lecture notes in electrical engineering, vol. 363. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-22635-4.

  5. Arafa A, Baknina A, Ulukus S. Online fixed fraction policies in energy harvesting communication systems. IEEE Trans Wirel Commun. 2018;17(5):2975–86. https://doi.org/10.1109/TWC.2018.2805336.

    Article  Google Scholar 

  6. Arafa A, Tong T, Fu M, Ulukus S, Chen W. Delay minimal policies in energy harvesting communication systems. IEEE Trans Commun. 2018;66(7):2918–30. https://doi.org/10.1109/TCOMM.2018.2805357.

    Article  Google Scholar 

  7. Arcari L, Gribaudo M, Palermo G, Serazzi G. Performance-driven analysis for an adaptive car navigation service on HPC systems. Berlin: Springer; 2019 (this issue 2019).

    Google Scholar 

  8. Atmaca T, Czachrski T, Pekergin F. A diffusion model of the dynamic effects of closed-loop feedback control mechanisms in atm networks. Arch Inf Teor Stosowanej. 1999;11(1):41–56.

    Google Scholar 

  9. Atmaca T, Rataj A, Kamli A. Analysis of a frequency response of a noisy optical network for its self-adaptation. Berlin: Springer; 2019 (this issue 2019).

    Google Scholar 

  10. Baccelli F, Gelenbe E, Plateau B. An end-to-end approach to the resequencing problem. J ACM. 1984;31(3):474–85.

    MathSciNet  MATH  Google Scholar 

  11. Berl A, Gelenbe E, Di Girolamo M, Giuliani G, De Meer H, Quan DM, Pentikousis K. Energy-efficient cloud computing. Comput J. 2010;53(7):1045–51.

    Google Scholar 

  12. Bernard G, Duda A, Haddad Y, Harrus G. Primitives for distributed computing in a heterogeneous local area network environment. IEEE Trans Softw Eng. 1989;15(12):1567–78.

    Google Scholar 

  13. Birke R, Cámara J, Chen LY, Esterle L, Geihs K, Gelenbe E, Giese H, Robertsson A, Zhu X. Self-aware computing systems: open challenges and future research directions. In: Kounev S, Kephart J, Milenkoski A, Zhu X, editors. Self-aware computing systems. Cham: Springer; 2017. p. 709–22.

    Google Scholar 

  14. Blazewicz J, Drabowski M, Wȩglarz J. Scheduling multiprocessor tasks to minimize schedule length. Comput IEEE Trans. 1985;100(5):389–93.

    MathSciNet  MATH  Google Scholar 

  15. Brun O, Wang L, Gelenbe E. Big data for autonomic intercontinental overlays. IEEE J Sel Areas Commun. 2016;34(3):575–83.

    Google Scholar 

  16. Cellary W, Jomier G. Consistency of versions in object-oriented databases. In: VLDB 90; 1990. pp. 432–41.

  17. Cellary W, Jomier G, Koszlajda T. Formal model of an object-oriented database with versioned objects and schema. In: Karagiannis D, editors. Proceedings of the international conference on database and expert systems applications. Wien: Springer; 1991. pp. 239–44.

  18. Cellary W, Morzy T, Gelenbe E. Concurrency control in distributed database systems. Amsterdam: Elsevier; 2014.

    MATH  Google Scholar 

  19. Cellary W, Vossen G, Jomier G. Multiversion object constellations: a new approach to support a designer’s database work. Eng Comput. 1994;3(4):230–44.

    Google Scholar 

  20. Chamanian S, Baghaee S, Uluşan H, Zorlu O, Uysal-Biyikoglu E, Külah H. Implementation of energy-neutral operation on vibration energy harvesting WSN. IEEE Sens J. 2019;19(8):3092–9.

    Google Scholar 

  21. Chesnais A, Gelenbe E, Mitrani I. On the modeling of parallel access to shared data. Commun ACM. 1983;26(3):196–202.

    MATH  Google Scholar 

  22. Coffman EG, Gelenbe E, Plateau B. Optimization of the number of copies in a distributed data base. IEEE Trans Softw Eng. 1981;1:78–84.

    MathSciNet  MATH  Google Scholar 

  23. Czachorski T, Domanska J, Pagano M. On stochastic models of internet traffic. In: Dudin A, Nazarov A, Yakupov R, editors. Information technologies and mathematical modelling: queueing theory and applications, ITMM 2015, Sudzhensk, Russia, November 18–22, 2015. Communications in computer and information science, vol. 564. Cham: Springer; 2015. pp. 289–303. https://doi.org/10.1007/978-3-319-25861-4_25.

  24. Czachórski T, Gelenbe E, Grochla K, Lent R, editors. Computer and information sciences—31st international symposium, ISCIS 2016, Kraków, Poland, October 27–28, 2016, Proceedings, communications in computer and information science, vol. 659. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-47217-1.

  25. Czachórski T, Gelenbe E, Grochla K, Lent R, editors. Computer and information sciences—32nd international symposium, ISCIS 2018, Held at the 24th IFIP world computer congress, WCC 2018, Poznan, Poland, September 20–21, 2018, Proceedings, communications in computer and information science, vol. 935. Cham: Springer; 2018. https://doi.org/10.1007/978-3-030-00840-6.

  26. Czachórski T, Gelenbe E, Lent R, editors. Information sciences and systems 2014—proceedings of the 29th international symposium on computer and information sciences, ISCIS 2014, Krakow, Poland, October 27–28, 2014. Cham: Springer; 2014. https://doi.org/10.1007/978-3-319-09465-6.

  27. Czachorski T, Grochla K, Jozefiok A, Nycz T, Pekergin F. Performance evaluation of a multiuser interactive networking system: a comparison of modelling methods. In: Gelenbe E, Lent R, Sakellari G, editors. Computer and information sciences II, Imperial Coll London. Cham: Springer; 2012. pp. 215–21. https://doi.org/10.1007/978-1-4471-2155-8_27.

  28. Czachorski T, Grochla K, Nycz T, Pekergin F. A diffusion approximation model for wireless networks based on IEEE 802.11 standard. Comput Commun. 2010;33(1, SI):S86–92. https://doi.org/10.1016/j.comcom.2010.07.006.

    Article  Google Scholar 

  29. Czachorski T, Grochla K, Pekergin F. Diffusion approximation model for the distribution of packet travel time at sensor networks. In: Cerda-Alabern L, editors. Wireless systems and mobility in next generation internet, Lecture notes in computer science, vol. 5122. European Union (2008). 3rd international workshop on network of excellence on next-generation internet, Univ Politec Catalunya, CompNet Res, Barcelona, Spain, Jan 16–18; 2008. p. 10+.

  30. Czachorski T, Grochla K, Pekergin F. Un modèle d’approximation de diffusion pour la distribution du temps d’acheminement des paquets dans les réseaux de senseurs. In: Colloque Francophone sur l’Ingénierie des Protocoles (CFIP); 2008.

  31. Czachorski T, Nycz M, Nycz T, Pekergin F. Analytical and numerical means to model transient states in computer networks. In: Kwiecien A, Gaj P, Stera P, editors. Computer networks, CN 2013, Communications in computer and information science, Lecture notes CCIS, vol. 370. Cham: Springer; 2013. pp. 426–35.

  32. Czachorski T, Nycz T, Nycz M, Pekergin F. Traffic engineering: erlang and ENGSET models revisited with diffusion approximation. In: Czachorski T, Gelenbe E, Lent R, editors. Information sciences and systems 2014, Polish Acad Sci, Inst Theoret and Appl Informat 2014. 29th annual symposium on computer and information sciences, Krakow, Poland, Oct 27–28, 2014. pp. 249–56. https://doi.org/10.1007/978-3-319-09465-6_26.

  33. Czachorski T, Nycz T, Pekergin F. Priority disciplines—a diffusion approach. In: 23rd international symposium on computer and information sciences, Istanbul, Turkey, Oct 27–29, 2008; 2008. p. 554+.

  34. Czachorski T, Nycz T, Pekergin F. Transient states analysis—diffusion approximation as an alternative to Markov models, fluid-flow approximation and simulation. In: ISCC: 2009 IEEE symposium on computers and communications, vols 1 and 2, IEEE symposium on computers and communications ISCC. Sousse, Tunisia, Jul 05–08; 2009. p. 1047+.

  35. Czachorski T, Nycz T, Pekergin F. Transient states of priority queues—a diffusion approximation study. In: Geraci P, Logothetis M, editors. AICT: 2009 fifth advanced international conference on telecommunications; 2009. pp. 44–51. https://doi.org/10.1109/AICT.2009.14.

  36. Czachorski T, Nycz T, Pekergin F. Transient states of priority queues—QoS issues in wireless networks via diffusion approximation. In: 2009 1st international conference on wireless communication, vehicular technology, information theory and aerospace and electronic systems technology, vol. 1 and 2; 2009. pp. 426+.

  37. Czachorski T, Pastuszka M, Pekergin F. A tool to model network transient states with the use of diffusion approximation. In: Puigjaner R, Savino NN, Serra B, editors. Computer performance evaluation: modelling techniques and tools, LNCS, vol. 1469; 1998. pp. 344–47.

  38. Devillers B, Gündüz D. A general framework for the optimization of energy harvesting communication systems with battery imperfections. J Commun Netw. 2012;14(2):130–9. https://doi.org/10.1109/JCN.2012.6253061.

    Article  Google Scholar 

  39. Dimitriou I, Alouf S, Jean-Marie A. A markovian queueing system for modeling a smart green base station. In: European workshop on performance engineering. Cham: Springer; 2015. pp. 3–18.

  40. Dobson S, Denazis S, Fernández A, Gaïti D, Gelenbe E, Massacci F, Nixon P, Saffre F, Schmidt N, Zambonelli F. A survey of autonomic communications. ACM Trans Auton Adapt Syst. 2006;1(2):223–59.

    Google Scholar 

  41. Domanska J, Domanski A, Czachorski T. Internet traffic source based on hidden markov model. In: Baladin S, Koucheryavy Y, Hu H, editors. Smart spaces and next generation wired/wireless networking, LNCS, vol. 6869. Cham: Springer; 2011. p. 395–404.

    Google Scholar 

  42. Domańska J, Nowak M, Nowak S, Czachórski T. European cybersecurity research and the seriot project. In: Communications in computer and information science, vol. 935; 2018. pp. 166–73.

  43. Domanski A, Domanska J, Czachorski T, Klamka J, Szygua J, Marek D. Diffusion approximation model of TCP newreno congestion control mechanism. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  44. Doncel J, Fourneau JM. Energy packet networks with multiple energy packet requirements. Probab Eng Inf Sci. 2019;1:4. https://doi.org/10.1017/S0269964819000226.

    Article  Google Scholar 

  45. Duda A. The effects of checkpointing on program execution time. Inf Process Lett. 1983;16(5):221–9.

    MathSciNet  MATH  Google Scholar 

  46. Duda A. Performance analysis of the checkpoint-rollback-recovery system via diffusion approximation. In: Proceedings of the international workshop on computer performance and reliability. North Holland: Elsevier; 1983. pp. 315–27.

  47. Duda A. Transient diffusion approximation for some queueing systems. In: Proceedings of the 1983 ACM SIGMETRICS conference on measurement and modelling of computer systems, ACM; 1983. pp. 118–28.

  48. Duda A. Diffusion approximations for time-dependent queueing systems. IEEE J Sel Areas Commun. 1986;4(6):905–18.

    Google Scholar 

  49. Duda A. Approximate performance analysis of parallel systems. In: Proceedings of the international workshop on computer performance and reliability. North Holland: Elsevier; 1987. pp. 315–27.

  50. Duda A, Czachorski T. Performance evaluation of fork and join synchronization primitives. Acta Inform. 1987;24(5):525–53.

    MathSciNet  MATH  Google Scholar 

  51. Duda A, Harrus G, Haddad Y, Bernard G. Estimating global time in distributed systems. In: ICDCS 87; 1987. pp. 299–306.

  52. Fourneau J, Czachorski T. Transport time distribution for deflection routing on an odd torus. In: Cunha JC, Medeiros PD, editors. EURO-PAR 2005 parallel processing, proceedings, LNCS, vol. 3648. Cham: Springer; 2005. p. 975–83.

    Google Scholar 

  53. Fourneau JM. Modeling green data-centers and jobs balancing with energy packet networks and interrupted Poisson energy arrivals. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  54. Fourneau JM, Gelenbe E. G-networks with adders. Future Internet. 2017;9(3):34-ff.

    Google Scholar 

  55. Fourneau JM, Wolter K, Reinecke P, Krauß T, Danilkina A. Multiple class g-networks with restart. In: ACM/SPEC international conference on performance engineering, ICPE’13, Prague, Czech Republic, April 21–24, 2013; 2013. pp. 39–50. http://doi.acm.org/10.1145/2479871.2479880.

  56. Francois F, Gelenbe E. Optimizing secure SDN-enabled inter-data centre overlay networks through cognitive routing. In: 2016 IEEE 24th international symposium on modeling, analysis and simulation of computer and telecommunication systems (MASCOTS), IEEE; 2016. pp. 283–88.

  57. Gelenbe E. On approximate computer system models. J ACM. 1975;22(2):261–9.

    MathSciNet  MATH  Google Scholar 

  58. Gelenbe E. On the optimum checkpoint interval. J ACM. 1979;26(2):259–70.

    MathSciNet  MATH  Google Scholar 

  59. Gelenbe E. Probabilistic models of computer systems, part ii: diffusion approximations, waiting times and batch arrivals. Acta Inform. 1979;12(4):285–303.

    MathSciNet  MATH  Google Scholar 

  60. Gelenbe E. Multiprocessor performance. New York: Wiley; 1989.

    MATH  Google Scholar 

  61. Gelenbe E. Réseaux neuronaux aléatoires stables. Comptes Rendus de l’Académie des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre 1990;310(3): 177–180

  62. Gelenbe E. Product-form queueing networks with negative and positive customers. J Appl Probab. 1991;28(3):656–63.

    MathSciNet  MATH  Google Scholar 

  63. Gelenbe E. G-networks with signals and batch removal. Probab Eng Inf Sci. 1993;7(3):335–42.

    MathSciNet  Google Scholar 

  64. Gelenbe E. Learning in the recurrent random neural network. Neural Comput. 1993;5(1):154–64.

    Google Scholar 

  65. Gelenbe E. A diffusion model for packet travel time in a random multihop medium. ACM Trans Sens Netw. 2007;3(2):10.

    Google Scholar 

  66. Gelenbe E. Steps toward self-aware networks. Commun ACM. 2009;52(7):66–75.

    Google Scholar 

  67. Gelenbe E. Search in unknown random environments. Phys Rev E. 2010;82(6):061112.

    Google Scholar 

  68. Gelenbe E. Energy packet networks: adaptive energy management for the cloud. In: Proceedings of the 2nd international workshop on cloud computing platforms, ACM, NY, USA; 2012. pp. 1:1–1:5. https://doi.org/10.1145/2168697.2168698.

  69. Gelenbe E. Energy packet networks: Ict based energy allocation and storage. In: Rodrigues JJPC, Zhou L, Chen M, Kailas A, editors. Green communications and networking—first international conference, GreeNets 2011, Colmar, France, October 5–7, 2011, Revised Selected Papers, Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol. 51. Cham: Springer; 2012.

  70. Gelenbe E. Adaptive management of energy packets. In: IEEE 38th annual computer software and applications conference, COMPSAC workshops 2014, Vasteras, Sweden, July 21–25, 2014; 2014. pp. 1–6.

  71. Gelenbe E. Synchronising energy harvesting and data packets in a wireless sensor. Energies. 2015;8(1):356–69.

    Google Scholar 

  72. Gelenbe E, Abdelrahman OH. An energy packet network model for mobile networks with energy harvesting. Nonlinear Theory Appl IEICE. 2018;9(3):1–15.

    Google Scholar 

  73. Gelenbe E, Campegiani P, Czachórski T, Katsikas SK, Komnios I, Romano L, Tzovaras D. Security in computer and information sciences. In: Recent cybersecurity research in Europe: proceedings of the 2018 ISCIS security workshop, Imperial College London. Lecture notes CCIS No. 821. Springer; 2018. pp. 26–7.

  74. Gelenbe E, Campegiani P, Czachórski T, Katsikas SK, Komnios I, Romano L, Tzovaras D, editors. Security in computer and information sciences—first international ISCIS security workshop 2018, Euro-CYBERSEC 2018, London, UK, February 26–27, 2018, Revised selected papers, Communications in computer and information science, vol. 821. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-95189-8.

  75. Gelenbe E, Caseau Y. The impact of information technology on energy consumption and carbon emissions. Ubiquity. 2015;2015(June):1.

    Google Scholar 

  76. Gelenbe E, Ceran ET. Energy packet networks with energy harvesting. IEEE Access. 2016;4:1321–31.

    Google Scholar 

  77. Gelenbe E, Derochette D. Performance of rollback recovery systems under intermittent failures. Commun ACM. 1978;21(6):493–9.

    MathSciNet  MATH  Google Scholar 

  78. Gelenbe E, Domanska J, Czàchorski T, Drosou A, Tzovaras D. Security for internet of things: the seriot project. In: 2018 international symposium on networks, computers and communications (ISNCC), IEEE, 19–21 June 2018, Rome, Italy; 2018. pp. 1–5.

  79. Gelenbe E, Finkel D, Tripathi SK. On the availability of a distributed computer system with failing components. ACM SIGMETRICS ’85, Proceedings of the 1985 ACM SIGMETRICS conference on measurement and modeling of computer systems, Austin, Texas, USA, August 26–29, 1985 13(2); 1985. pp. 6–13.

  80. Gelenbe E, Finkel D, Tripathi SK. Availability of a distributed computer system with failures. Acta Inform. 1986;23(6):643–55.

    MATH  Google Scholar 

  81. Gelenbe E, Gesbert D, Gunduz D, Külah H, Uysal-Biyikoglu E. Energy harvesting communication networks: Optimization and demonstration (the e-crops project). In: 2013 24th Tyrrhenian international workshop on digital communications-Green ICT (TIWDC), IEEE; 2013. pp. 1–6.

  82. Gelenbe E, Hernández M. Optimum checkpoints with age dependent failures. Acta Inform. 1990;27(6):519–31.

    MathSciNet  MATH  Google Scholar 

  83. Gelenbe E, Lent R, editors. Computer and information sciences III—27th international symposium on computer and information sciences, Paris, France, October 3–4, 2012. Cham: Springer; 2013. https://doi.org/10.1007/978-1-4471-4594-3.

  84. Gelenbe E, Lent R. Energy-qos trade-offs in mobile service selection. Future Internet. 2013;5(2):128–39.

    Google Scholar 

  85. Gelenbe E, Lent R, Sakellari G, editors. Computer and information sciences II—26th international symposium on computer and information sciences, London, UK, 26–28 September 2011. Cham: Springer; 2011. https://doi.org/10.1007/978-1-4471-2155-8.

  86. Gelenbe E, Lent R, Sakellari G, Sacan A, Toroslu IH, Yazici A, editors. Computer and information sciences—Proceedings of the 25th international symposium on computer and information sciences, London, UK, September 22–24, 2010, Lecture notes in electrical engineering, vol. 62. Cham: Springer; 2010. https://doi.org/10.1007/978-90-481-9794-1.

  87. Gelenbe E, Liu Z. Performance analysis approximations for parallel processing in multiprocessor systems. In: Parallal processing, Proceedings of the IFIP WG 10.3 conference on. Elsevier Science; 1988.

  88. Gelenbe E, Mang X, Feng Y. A diffusion cell loss estimate for ATM with multiclass bursty traffic. In: Kuvatsos D, editors International workshop on performance modelling and evaluation of ATM networks, July 2–6, 1995, Ilkley, UK. Cham: Springer; 1995. pp. 233–248.

  89. Gelenbe E, Mang X, Önvural R. Diffusion based statistical call admission control in ATM. Perform Eval. 1996;27:411–36.

    MATH  Google Scholar 

  90. Gelenbe E, Mang X, Onvural R. Bandwidth allocation and call admission control in high-speed networks. IEEE Commun Mag. 1997;35(5):122–9.

    Google Scholar 

  91. Gelenbe E, Mitrani I. Analysis and synthesis of computer systems. Singapore: World Scientific; 2010.

    MATH  Google Scholar 

  92. Gelenbe E, Morfopoulou C. Routing and g-networks to optimise energy and quality of service in packet networks. In: Hatziargyriou N, Dimeas A, Tomtsi T, Weidlich A, editors. International conference on energy-efficient computing and networking. E-Energy 2010, Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol. 54. Berlin: Springer; 2010. pp. 163–73.

  93. Gelenbe E, Morfopoulou C. A framework for energy-aware routing in packet networks. Comput J. 2011;54(6):850–9.

    Google Scholar 

  94. Gelenbe E, Pujolle G. The behaviour of a single queue in a general queueing network. Acta Inform. 1976;7(2):123–36.

    MathSciNet  MATH  Google Scholar 

  95. Gelenbe E, Pujolle G. Introduction aux Réseaux de Files d’Sttente. Eyrolles: Edition Hommes et Techniques; 1982.

    MATH  Google Scholar 

  96. Gelenbe E, Pujolle G. Introduction to queueing networks. Chichester: Wiley; 1998.

    MATH  Google Scholar 

  97. Gelenbe E, Sevcik K. Analysis of update synchronization for multiple copy data-bases. In: 3rd Berkeley workshop on distributed data and computer networks, Lawrence Berkeley Laboratory, Berkeley, California, August 29–31; 1978. pp. 69–90.

  98. Gelenbe E, Silvestri S. Reducing power consumption in wired networks. In: 24th international symposium on computer and information sciences (ISCIS 2009), 14–16 September 2009, Turkish Republic of North Cyprus, IEEE; 2009. pp. 292–97.

  99. Gelenbe E, Zhang Y. Matching energy and job flows for system performance optimization. Submitted for Publication 2019.

  100. Gelenbe E, Zhang Y. Performance optimization with energy packets. IEEE Syst J. 2019;1:1–11. https://doi.org/10.1109/JSYST.2019.2912013 (Early Access).

    Article  Google Scholar 

  101. Ghosal D, Yeh G, Shukla S, Farrens M, Wu J. Model driven joint optimization of power and latency guarantee in datacenter applications. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  102. Gonzalez G, Atmaca T, Czachorski T. An energy saving solution in integrated access networks. In: Gaj P, Kwiecien A, Stera P, editors. Computer networks, CN 2015, Communications in computer and information science. 22nd international conference on computer networks (CN), Brunow, Poland, June 16–19, 2015, vol. 522. Cham: Springer; 2015. pp. 222–31. https://doi.org/10.1007/978-3-319-19419-6_21.

  103. Gorawski M, Grochla K. Performance tests of smart city IoT data repositories for universal linear infrastructure data and graph databases. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  104. Gurakan B, Kaya O, Ulukus S. Energy and data cooperative multiple access channel with intermittent data arrivals. IEEE Trans Wirel Commun. 2018;17(3):2016–28. https://doi.org/10.1109/TWC.2017.2787744.

    Article  Google Scholar 

  105. Gurakan B, Ozel O, Yang J, Ulukus S. Energy cooperation in energy harvesting communications. IEEE Trans Commun. 2013;61(12):4884–98.

    Google Scholar 

  106. Guruacharya S, Hossain E. Self-sustainability of energy harvesting systems: concept, analysis, and design. IEEE Trans Green Commun Netw. 2018;2(1):175–92.

    Google Scholar 

  107. Harrison PG, Pitel E. Response time distributions in tandem g-networks. J Appl Probab. 1995;32(1):224–46. https://doi.org/10.2307/3214932.

    MathSciNet  Article  MATH  Google Scholar 

  108. Ho CK, Zhang R. Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Trans Signal Process. 2012;60(9):4808–18. https://doi.org/10.1109/TSP.2012.2199984.

    MathSciNet  Article  MATH  Google Scholar 

  109. Ilik B, Koyuncuoglu A, Şardan Sukas O, Külah H. Thin film piezoelectric acoustic transducer for fully implantable cochlear implants. Sens Actuators A. 2018;280:38–46.

    Google Scholar 

  110. Jomier G, Cellary W. The database version approach. Netw Inf Syst J. 2000;3(1):177–214.

    Google Scholar 

  111. Kadioglu YM, Gelenbe E. Product form solution for cascade networks with intermittent energy. IEEE Syst J. 2019;. https://doi.org/10.1109/JSYST.2018.2854838 (Early Access).

    Article  Google Scholar 

  112. Kansal A, Hsu J, Zahedi S, Srivastava MB. Power management in energy harvesting sensor networks. ACM Trans Embed Comput Syst. 2007;6:4. https://doi.org/10.1145/1274858.1274870.

    Article  Google Scholar 

  113. Kopats D, Matalytski M. About diffusion approximation of open queueing network with limited number of customer and time-dependent service parameters. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  114. Ku M, Li W, Chen Y, Liu KJR. Advances in energy harvesting communications: past, present, and future challenges. IEEE Commun Surv Tutor. 2016;18(2):1384–412. https://doi.org/10.1109/COMST.2015.2497324.

    Article  Google Scholar 

  115. Külah H, Najafi K. Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens J. 2008;8(3):261–8.

    Google Scholar 

  116. Laalaoua R, Czachorski T, Atmaca T. Markovian model of RED mechanism. In: Buyya R, Mohay G, Roe P, editors. First IEEE/ACM international symposium on cluster computing and the grid, proceedings, IEEE 2001, Brisbane, Australia, May 15–18, 2001. pp. 610–617. https://doi.org/10.1109/CCGRID.2001.923250.

  117. Laalaoua R, Jedrus S, Atmaca T, Czachorski T. Diffusion model of RED control mechanism. In: Lorenz P, editors. Networking—ICN 2001, PT I, proceedings, Lecture notes in computer science, 1st international conference on networking, Colmar, France, Jul 09–13, 2001, vol. 2093. Heidelberg:Springer; 2001. pp. 107–16.

  118. Liu Q, Mak T, Luo J, Luk W, Yakovlev A. Power adaptive computing system design in energy harvesting environment. In: Embedded computer systems, 2011 international conference on, 18–21 July 2011, Samos, Greece, IEEE; 2011. pp. 33–40. https://doi.org/10.1109/SAMOS.2011.6045442.

  119. Lo Piano S, Mayumi K. Toward an integrated assessment of the performance of photovoltaic systems for electricity generation. Appl Energy. 2017;186(2):167–74. https://doi.org/10.1016/j.apenergy.2016.05.102.

    Article  Google Scholar 

  120. Marin A. Product-form in g-networks. Probab Eng Inf Sci. 2016;30(3):345–60. https://doi.org/10.1017/S0269964816000048.

    MathSciNet  Article  MATH  Google Scholar 

  121. Marin GA, Mang X, Gelenbe E, Onvural RO. Statistical call admission control. 2001. US Patent 6222824

  122. Niedzielewski K, Marchwiany M, Piliszek R, Michalewicz M, Rudnicki W. Multidimensional feature selection and high performance parallex. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  123. Niu X, Korniss G, Szymanski B. Supervised learning of the global risk network activation from media event reports. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  124. Nowak M, Domańska J, Nowak S. Cognitive routing for improvement of IoT security. In: 2019 IEEE international conference on fog computing (ICFC 2019). IEEE Computer Society, Prague, Czech Republic; 2019.

  125. Nowak S, Nowak M, Domańska J, Czachórski T. Cognitive packet networks for the secure internet of things. In: Global Internet of Things summit (GIoTS). Aarhus, Denmark; 2019.

  126. Orgerie AC, Amersho BL, Haudebourg T, Quinson M, Rifai M, Pacheco DL, Lefèvre L. Simulation toolbox for studying energy consumption in wired networks. In: Embedded computer systems, 2011 international conference on, Nov 26–30 2017, Tokyo, Japan, IEEE; 2017. pp. 1–5.

  127. Ozel O, Tutuncuoglu K, Yang J, Ulukus S, Yener A. Transmission with energy harvesting nodes in fading wireless channels: optimal policies. IEEE J Sel Areas Commun. 2011;29(8):1732–43.

    Google Scholar 

  128. Phi TC, Muzy A, Reynaud-Bouret P. Event-scheduling algorithms with Kalikov decomposition for simulating potentially infinite neuronal networks. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  129. Rataj A. Random neural networks with hierarchical committees for improved routing in wireless mesh networks with interference. Berlin: Springer; 2019 (this issue).

    Google Scholar 

  130. Siavvas M, Gelenbe E. Optimum checkpoints for programs with loops. Simul Model Pract Theory. 2019;97:101951.

    Google Scholar 

  131. Szczesniak I, Mukherjee B, Czachorski T. Approximate analytical performance evaluation of synchronous bufferless optical packet-switched networks. J Opt Commun Netw. 2011;3(10):806–15. https://doi.org/10.1364/JOCN.3.000806.

    Article  Google Scholar 

  132. Takahashi R, Takuno T, Hikihara T. Estimation of power packet transfer properties on indoor power line channel. Energies. 2012;5(7):2141–9.

    Google Scholar 

  133. Takahashi R, Tashiro K, Hikihara T. Router for power packet distribution network: design and experimental verification. IEEE Trans Smart Grid. 2015;6(2):618–26. https://doi.org/10.1109/TSG.2014.2384491.

    Article  Google Scholar 

  134. Tripathi S, Duda A. Time-dependent analysis of queueing systems. Inf Syst Oper Res. 1986;24(3):199–220.

    MATH  Google Scholar 

  135. Tripathi SK, Finkel D, Gelenbe E. Load sharing in distributed systems with failures. Acta Inform. 1988;25(6):677–89.

    MathSciNet  Google Scholar 

  136. Ulukus S, Yener A, Erkip E, Simeone O, Zorzi M, Grover P, Huang K. Energy harvesting wireless communications: a review of recent advances. IEEE J Sel Areas Commun. 2015;33(3):360–81. https://doi.org/10.1109/JSAC.2015.2391531.

    Article  Google Scholar 

  137. Wang L, Gelenbe E. An implementation of voice over ip in the cognitive packet network. Cham: Springer; 2014. p. 33–40.

    Google Scholar 

  138. Wang L, Gelenbe E. Demonstrating voice over an autonomic network. In: 2015 IEEE international conference on autonomic computing, IEEE; 2015. pp. 139–40.

  139. Wang L, Gelenbe E. Adaptive dispatching of tasks in the cloud. IEEE Trans Cloud Comput. 2018;6(1):33–45.

    Google Scholar 

  140. Wȩgrzyn S, Gille JC, Vidal P. Developmental systems: at the crossroads of system theory, computer science, and genetic engineering. New York: Springer; 1990.

    Google Scholar 

  141. Weglarz J, Blazewicz J, Cellary W, Slowinski R. Algorithm 520: an automatic revised simplex method for constrained resource network scheduling [h]. ACM Trans Math Softw. 1977;3(3):295–300.

    MATH  Google Scholar 

  142. Wegrzyn S. Les Bases de L’Automatique Industrielle. Paris: Dunod; 1965.

    Google Scholar 

  143. Yang J, Ulukus S. Optimal packet scheduling in a multiple access channel with energy harvesting transmitters. J Commun Netw. 2012;14(2):140–50. https://doi.org/10.1109/JCN.2012.6253062.

    Article  Google Scholar 

  144. Yang J, Ulukus S. Optimal packet scheduling in an energy harvesting communication system. IEEE Trans Commun. 2012;60(1):220–30. https://doi.org/10.1109/TCOMM.2011.112811.100349.

    Article  Google Scholar 

  145. Zhang Y. Optimal energy distribution with energy packet networks. Probab Eng Inf Sci. 2019;1:1–17. https://doi.org/10.1017/S0269964818000566.

    Article  Google Scholar 

  146. Zielinski J, Nowosielski J. Finet’s law as a special case of the generalised Murray’s law. Berlin: Springer; 2019 (this issue).

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Unions Horizon 2020 Research and Innovation Programme Project SDK4ED, under Grant agreement no. 780572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Gelenbe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Modelling methods in Computer Systems, Networks and Bioinformatics guest edited by Erol Gelenbe”.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gelenbe, E. Introduction to the Special Issue on the French–Polish Collaboration in Mathematical Models of Computer Systems, Networks and Bioinformatics. SN COMPUT. SCI. 1, 44 (2020). https://doi.org/10.1007/s42979-019-0044-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42979-019-0044-6