Skip to main content
Log in

T10 Test as an Alternative Method to Assess Critical Speed and its Potential Application to Runners

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Exercise intensity is usually prescribed based on a metabolic marker, such as maximum oxygen uptake or maximal lactate steady state. Those markers, however, face some difficulties regarding their practical applicability to the general population. The critical speed emerges as an alternative parameter to determine aerobic exercise intensities through maximal tests using ergometers or field tests, demanding few resources. We evaluated the fidelity of test to predict critical speed and if this parameter could be used to prescribe intensity in aerobic exercise. One hundred recreational runners performed the T10 test and a conventional critical speed test to define running speeds. Out of them, 44 runners proceed continuous and interval races. The critical speed assessed from T10 test was then compared to critical speed measured by three maximal runs in the track field (1200 m, 2400 m, and 3600 m). We found a strong correlation (r = 0.91) and did not find statistical differences (t = 1.8, P = 0.90) between critical speed assessed by T10 (3.89 ± 0.49 m/s) and field-test (3.85 ± 0.51 m/s). T10 is also better associated with running and interval running speeds than metabolic markers. T10 test can be used as a valid alternative method to assess critical speed and to prescribe runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VO2max :

Maximum oxygen uptake

HRmax:

Maximum heart rate

GET:

Gas exchange threshold

LL:

Blood lactate

T10:

10-Min treadmill test

VT:

Ventilatory threshold

CS:

Critical speed

CP:

Critical power

VT2 :

Second ventilatory threshold

References

  1. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7. https://doi.org/10.1152/jappl.1986.60.6.2020.

    Article  CAS  PubMed  Google Scholar 

  2. Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Schmidt RJ, Johnson GO. Responses during exhaustive exercise at critical power determined from the 3-min all-out test. J Sports Sci. 2013;31:537–45. https://doi.org/10.1080/02640414.2012.738925.

    Article  PubMed  Google Scholar 

  3. Billat VL, Flechet B, Petit B, Muriaux G, Koralsztein JP. Interval training at VO2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc. 1999;31(1):156–63.

    Article  CAS  PubMed  Google Scholar 

  4. Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D, Koralsztein JP. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc. 2003;35(2):297–304. https://doi.org/10.1249/01.MSS.0000053556.59992.A9.

    Article  PubMed  Google Scholar 

  5. Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ. The relationship between critical speed and the respiratory compensation point: Coincidence or equivalence. Eur J Sport Sci. 2015;15(7):631–9. https://doi.org/10.1080/17461391.2014.966764.

    Article  CAS  PubMed  Google Scholar 

  6. Carter H, Pringle JSM, Jones AM, Doust JH. Oxygen uptake kinetics during treadmill running across exercise intensity domains. Eur J Appl Physiol. 2002;86(4):347–54. https://doi.org/10.1007/s00421-001-0556-2.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng C-F, Yang Y-S, Lin H-M, Lee CL, Wang CY. Determination of critical power in trained rowers using a three-minute all-out rowing test. Eur J Appl Physiol. 2012;112(4):1251–60. https://doi.org/10.1007/s00421-011-2081-2.

    Article  PubMed  Google Scholar 

  8. Cumming G. The new statistics: why and how. Psychol Sci. 2013;25(1):7–29. https://doi.org/10.1177/0956797613504966.

    Article  PubMed  Google Scholar 

  9. Davies JI, Williams PA. Quantitative aspects of the regulation of cellular cyclic AMP levels: I. Structure and kinetics of a model system. J Theor Biol. 1975;53(1):1–30. https://doi.org/10.1016/0022-5193(75)90100-9.

    Article  CAS  PubMed  Google Scholar 

  10. Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ. The maximally attainable V̇O2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95(5):1901–7. https://doi.org/10.1152/japplphysiol.00024.2003.

    Article  CAS  PubMed  Google Scholar 

  11. Esteve-Lanao J, Juan AFSAN, Earnest CP, Foster C, Lucia A. How do endurance runners actually train? Relationship with competition performance. Med Sci Sport Exerc. 2005;37(3):496–504.

    Article  Google Scholar 

  12. Florence S, Weir JP. Relationship of critical velocity to marathon running performance. Eur J Appl Physiol. 1997;75(3):274–8. https://doi.org/10.1007/s004210050160.

    Article  CAS  Google Scholar 

  13. Follador L, Alves RC, Ferreirados SS, Buzzachera CF, Andrade VFDS, Garcia EDSA, Osiecki R, Barbosa SC, de Oliveira LM, da Silva SG. Physiological, perceptual, and affective responses to six high-intensity interval training protocols. Percept Mot Skills. 2018;125(2):329–50. https://doi.org/10.1177/0031512518754584.

    Article  PubMed  Google Scholar 

  14. Follador L, de Borba EF, Neto ALB, da Silva SG. A submaximal treadmill test to predict critical speed. J Sports Sci. 2021;39(14):835–44. https://doi.org/10.1080/02640414.2020.1847504.

    Article  PubMed  Google Scholar 

  15. Follador L, Borba EF, da Silva SG. Relationship of critical speed derived from a 10-minute submaximal treadmill test to 5-km and 10-km running performances. Appl Physiol Nutr Metab. 2021;47(2):159–64. https://doi.org/10.1139/apnm-2021-0374.

    Article  CAS  PubMed  Google Scholar 

  16. Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev. 1996;24(1):35–71.

    CAS  PubMed  Google Scholar 

  17. Galbraith A, Hopker J, Lelliott S, Diddams L, Passfield L. A single-visit field test of critical speed. Int J Sports Physiol Perform. 2014;9(6):931–5. https://doi.org/10.1123/ijspp.2013-0507.

    Article  PubMed  Google Scholar 

  18. Hartman ME, Ekkekakis P, Dicks ND, Pettitt RW. Dynamics of pleasure–displeasure at the limit of exercise tolerance: conceptualizing the sense of exertional physical fatigue as an affective response. J Exp Biol. 2019;222(Pt 3):jeb186585. https://doi.org/10.1242/jeb.186585.

    Article  PubMed  Google Scholar 

  19. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6(3):117–30. https://doi.org/10.1055/s-2008-1025824.

    Article  CAS  PubMed  Google Scholar 

  20. Hill DW. The critical power concept. Sports Med. 1993;16(4):237–54. https://doi.org/10.2165/00007256-199316040-00003.

    Article  CAS  PubMed  Google Scholar 

  21. Housh TJ, Johnson GO, McDowell SL, Housh DJ, Pepper M. Physiological responses at the fatigue threshold. Int J Sports Med. 1991;12(3):305–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hughson RL, Orok CJ, Staudt LE. A high velocity treadmill running test to assess endurance running potential. Int J Sports Med. 1984;5(1):23–5.

    Article  CAS  Google Scholar 

  23. Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50(10):1729–56. https://doi.org/10.1007/s40279-020-01322-8.

    Article  PubMed  Google Scholar 

  24. Jolly S. A critical view of critical velocity testing to predict performance. J Sports Sci. 2013;31(7):688–9. https://doi.org/10.1080/02640414.2012.679676.

    Article  PubMed  Google Scholar 

  25. Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep. 2019;7(10):e14098. https://doi.org/10.14814/phy2.14098.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14(4):321–7. https://doi.org/10.1080/02640419608727717.

    Article  CAS  PubMed  Google Scholar 

  27. Jones AM, Vanhatalo A. The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. 2017;47(Suppl 1):65–78. https://doi.org/10.1007/s40279-017-0688-0.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sport Exerc. 2010;42(10):1876–90.

    Article  Google Scholar 

  29. Kranenburg KJ, Smith DJ. Comparison of critical speed determined from track running and treadmill tests in elite runners. Med Sci Sport Exerc. 1996;28(5):614–8

  30. Lin LI-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68. https://doi.org/10.2307/2532051.

    Article  CAS  PubMed  Google Scholar 

  31. McLellan TOMM, Cheung KSY. A comparative evaluation of the individual anaerobic threshold and the critical power. Med Sci Sport Exerc. 1992;24(5):543–50.

    Article  CAS  Google Scholar 

  32. Moritani T, Nagata A, deVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–50. https://doi.org/10.1080/00140138108924856.

    Article  CAS  PubMed  Google Scholar 

  33. Laboratório Olimpico. Orientações para monitoramento da carga interna, recuperação e bem-estar. 2011. https://www.cob.org.br/pt/documentos/download/33d2e22fa4d4b.

  34. Pettitt RW. Applying the critical speed concept to racing strategy and interval training prescription. Int J Sports Physiol Perform. 2016;11(7):842–7. https://doi.org/10.1123/ijspp.2016-0001.

    Article  PubMed  Google Scholar 

  35. Pettitt RW, Jamnick N, Clark IE. 3-min all-out exercise test for running. Int J Sports Med. 2012;33(6):426–31.

    Article  CAS  PubMed  Google Scholar 

  36. Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31(9):1265–79. https://doi.org/10.1080/00140138808966766.

    Article  CAS  PubMed  Google Scholar 

  37. Pringle JS, Jones AM. Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol. 2002;88(3):214–26. https://doi.org/10.1007/s00421-002-0703-4.

    Article  CAS  PubMed  Google Scholar 

  38. Smith CG, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol. 2001;85(1–2):19–26. https://doi.org/10.1007/s004210100384.

    Article  CAS  PubMed  Google Scholar 

  39. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97(1):141–7. https://doi.org/10.1016/j.amjcard.2005.07.130.

    Article  PubMed  Google Scholar 

  40. Vanhatalo A, Black MI, DiMenna FJ, Blackwell JR, Schmidt JF, Thompson C, Wylie LJ, Mohr M, Bangsbo J, Krustrup P, Jones AM. The mechanistic bases of the power–time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;594(15):4407–23. https://doi.org/10.1113/JP271879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vickers AJ, Vertosick EA. An empirical study of race times in recreational endurance runners. BMC Sports Sci Med Rehabil. 2016;8(1):26. https://doi.org/10.1186/s13102-016-0052-y.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Whipp BJ. The slow component of O2 uptake kinetics during heavy exercise. Med Sci Sport Exerc. 1994;26(11):1319–26.

    Article  CAS  Google Scholar 

  43. Winter EM, Abt GA, Nevill AM. Metrics of meaningfulness as opposed to sleights of significance. J Sports Sci. 2014;32(10):901–2. https://doi.org/10.1080/02640414.2014.895118.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the participants for their time and effort.

Funding

Capes/Brazil; CNPq/Brazil (439392/2016; 422193/2016);

Author information

Authors and Affiliations

Authors

Contributions

EFB and SGS conceived and designed the experiment. EFB and LF conducted the experiment. EFB, LF analyzed the data, interpreted results and wrote the manuscript. LF, SCB and MPT provided critical inputs and contributed in writing the manuscript.

Corresponding author

Correspondence to Edilson Fernando de Borba.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Consent to Participate

All participants reviewed and signed informed consents before participating in the study.

Consent for Publication

All participants reviewed and signed informed consents that their data be published anonymously.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Borba, E.F., Follador, L., Barbosa, S.C. et al. T10 Test as an Alternative Method to Assess Critical Speed and its Potential Application to Runners. J. of SCI. IN SPORT AND EXERCISE 5, 369–377 (2023). https://doi.org/10.1007/s42978-022-00195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-022-00195-9

Keywords

Navigation