Skip to main content
Log in

Individual Responses to Creatine Supplementation on Muscular Power is Modulated by Gene Polymorphisms in Military Recruits

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

The aim was to explore five established SNPs (rs1815739, rs1805086, rs2700352, rs28497577, and rs28357094) that are known to modulate skeletal muscle protein kinetics in response to creatine supplementation.

Methods

A randomized, placebo-controlled, repeated measures design was used. Participants (n = 152) were randomized divided into one of two groups: CREA (20 g/day creatine monohydrate) or PLAC: (dextrose) for 7 days. SNP were assessed, and participants were classified accordingly. Before and after supplementation, anthropometrics (height and body mass) and performance measures (vertical jump, countermovement vertical jump, squat jump, abdominal crunches, and maximum push-ups) were assessed.

Results

CREA gained more body mass than PLAC (CREA: ∆0.864 ± 0.06 kg; PLAC: ∆0.154 ± 0.07 kg, P < 0.001). In the CREA group, the presence of an A allele for the MYLK1 polymorphism was related to changes in countermovement jump height (P = 0.027; effect size [d] = 0.41) and leg power (P = 0.040, effect size [d] = 0.18). The total number of abdominal crunches after supplementation was influenced by treatments and SPP1 gene (P = 0.041). A higher number of abdominal crunches was associated with the G allele in the CREA group and the TT genotype in the PLAC group (effect size [d] = 0.04).

Conclusion

Collectively, short-term creatine supplementation increased body mass but was unable to alter muscle performance. However, following creatine supplementation, participants expressing A alleles in the MYLK1 polymorphism had a greater increase in jump height and leg power and participants expressing G alleles in the SPP1 gene had greater improvements in abdominal crunch performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, Rawson ES, Smith-Ryan AE, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr. 2021;18:1–17. https://doi.org/10.1186/s12970-021-00412-w.

    Article  Google Scholar 

  2. Bello L, D’Angelo G, Villa M, Fusto A, Vianello S, Merlo B, Sabbatini D, Barp A, Gandossini S, Magri F, Comi GP, Pedemonte M, Tacchetti P, Lanzillotta V, Trucco F, D’Amico A, Bertini E, Astrea G, Politano L, Masson R, Baranello G, Albamonte E, De Mattia E, Rao F, Sansone VA, Previtali S, Messina S, Vita GL, Berardinelli A, Mongini T, Pini A, Pane M, Mercuri E, Vianello A, Bruno C, Hoffman EP, Morgenroth L, Gordish-Dressman H, McDonald CM, CINRG-DNHS Investigators, Pegoraro E. Genetic modifiers of respiratory function in Duchenne muscular dystrophy. Ann Clin Transl Neurol. 2020;7(5):786–98.

    Article  CAS  Google Scholar 

  3. Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic basis of creatine in health and disease: a bioinformatics-assisted review. Nutrients 2021;13(4):1238. https://doi.org/10.3390/nu13041238.

    Article  CAS  Google Scholar 

  4. Bonilla DA, Moreno Y, Rawson ES, Forero DA, Stout JR, Kerksick CM, Roberts MD, Kreider RB. A convergent functional genomics analysis to identify biological regulators mediating effects of creatine supplementation. Nutrients. 2021;13(8):2521. https://doi.org/10.3390/nu13082521.

    Article  CAS  Google Scholar 

  5. Candow D, Forbes S, Chilibeck P, Cornish S, Antonio J, Kreider R. Variables influencing the effectiveness of creatine supplementation as a therapeutic intervention for sarcopenia. Front Nutr. 2019;6:124. https://doi.org/10.3389/fnut.2019.00124.

    Article  CAS  Google Scholar 

  6. Candow DG, Chilibeck PD, Forbes SC. Creatine supplementation and aging musculoskeletal health. Endocrine. 2014;45(3):354–61. https://doi.org/10.1007/s12020-013-0070-4.

    Article  CAS  Google Scholar 

  7. Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. Effectiveness of creatine supplementation on aging muscle and bone: focus on falls prevention and inflammation. J Clin Med. 2019;8:488. https://doi.org/10.3390/jcm8040488.

    Article  CAS  Google Scholar 

  8. Candow DG, Forbes SC, Kirk B, Duque G. Current evidence and possible future applications of creatine supplementation for older adults. Nutrients. 2021;13(3):1–18. https://doi.org/10.3390/nu13030745.

    Article  CAS  Google Scholar 

  9. Chen M, Wang L, Li Y, Chen Y, Zhang H, Zhu Y, He R, Li H, Lin J, Zhang Y, Zhang C. Genetic modifiers of duchenne muscular dystrophy in Chinese patients. Front Neurol. 2020;11:721. https://doi.org/10.3389/fneur.2020.00721.

    Article  CAS  Google Scholar 

  10. Chilibeck P, Kaviani M, Candow D, Zello GA. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med. 2017;8:213–26. https://doi.org/10.2147/OAJSM.S123529.

    Article  Google Scholar 

  11. Clarkson PM, Hoffman EP, Zambraski E, Gordish-Dressman H, Kearns A, Hubal M, Harmon B, Devaney JM. ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol. 2005;99(2):564–9. https://doi.org/10.1152/japplphysiol.00130.2005.

    Article  CAS  Google Scholar 

  12. Del Coso J, Valero M, Salinero JJ, Lara B, Gallo-Salazar C, Areces F. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon. PLoS One. 2017;12(3): e0172965. https://doi.org/10.1371/journal.pone.0172965.

    Article  CAS  Google Scholar 

  13. Eynon N, Ruiz J, Oliveira J, Duarte J, Birk R, Lucia A. Genes and elite athletes: a roadmap for future research. J Physiol. 2011;589(Pt 13):3063–70. https://doi.org/10.1113/jphysiol.2011.207035.

    Article  CAS  Google Scholar 

  14. Farshidfar F, Pinder MA, Myrie SB. Creatine Supplementation and skeletal muscle metabolism for building muscle mass-review of the potential mechanisms of action. Curr Protein Pept Sci. 2017;18(12):1273–87. https://doi.org/10.2174/1389203718666170606105108.

    Article  CAS  Google Scholar 

  15. Forbes S, Candow D, Ferreira L, Souza-Junior T. Effects of creatine supplementation on properties of muscle, bone, and brain function in older adults: a narrative review. J Diet Suppl. 2021. https://doi.org/10.1080/19390211.2021.1877232 (Online ahead of print).

    Article  Google Scholar 

  16. Forbes SC, Candow DG, Ostojic SM, Roberts MD, Chilibeck PD. Meta-analysis examining the importance of creatine ingestion strategies on lean tissue mass and strength in older adults. Nutrients. 2021;13(6):1912. https://doi.org/10.3390/nu13061912.

    Article  Google Scholar 

  17. Gordon E, Gordish Dressman H, Hoffman E. The genetics of muscle atrophy and growth: the impact and implications of polymorphisms in animals and humans. Int J Biochem Cell Biol. 2005;37(10):2064–74. https://doi.org/10.1016/j.biocel.2005.05.005.

    Article  CAS  Google Scholar 

  18. Green A, Hultman E, Macdonald I, Sewell D, Greenhaff P. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996;271(5 Pt 1):E821–6. https://doi.org/10.1152/ajpendo.1996.271.5.E821.

    Article  CAS  Google Scholar 

  19. Harris R, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992;83(3):367–74. https://doi.org/10.1042/cs0830367.

    Article  CAS  Google Scholar 

  20. Harvey NR, Voisin S, Dunn PJ, Sutherland H, Yan X, Jacques M, Papadimitriou ID, Haseler LJ, Ashton KJ, Haupt LM, Eynon N, Griffiths LR. Genetic variants associated with exercise performance in both moderately trained and highly trained individuals. Mol Genet Genom. 2020;295(2):515–23. https://doi.org/10.1007/s00438-019-01639-8.

    Article  CAS  Google Scholar 

  21. Hultman E, Söderlund K, Timmons J, Cederblad G, Greenhaff P. Muscle creatine loading in men. J Appl Physiol [Internet]. 1996;81(1):232–7. https://doi.org/10.1152/jappl.1996.81.1.232.

    Article  CAS  Google Scholar 

  22. Koch A, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact. 2014;14(1):68–77.

    CAS  Google Scholar 

  23. Kreider R, Kalman D, Antonio J, Ziegenfuss T, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14(1):18. https://doi.org/10.1186/s12970-017-0173-z.

    Article  CAS  Google Scholar 

  24. Kuraoka M, Kimura E, Nagata T, Okada T, Aoki Y, Tachimori H, Yonemoto N, Imamura M, Takeda S. Serum osteopontin as a novel biomarker for muscle regeneration in duchenne muscular dystrophy. Am J Pathol. 2016;186(5):1302–12. https://doi.org/10.1016/j.ajpath.2016.01.002.

    Article  CAS  Google Scholar 

  25. Lohman T, Roche A, Martorell R. Anthropometric standardization reference manual. Champaign: Human Kinetics Books; 1998.

    Google Scholar 

  26. Nghiem PP, Kornegay JN, Uaesoontrachoon K, Bello L, Yin Y, Kesari A, Mittal P, Schatzberg SJ, Many GM, Lee NH, Hoffman EP. Osteopontin is linked with AKT, FoxO1, and myostatin in skeletal muscle cells. Muscle Nerve. 2017;56(6):1119–27. https://doi.org/10.1002/mus.25752.

    Article  CAS  Google Scholar 

  27. Paiva JM, Souza COS, Valle VO, Forbes SC, Pereira R, Machado M. Creatine monohydrate enhanced fixed and planned load reduction resistance training without altering ratings of perceived exertion. J Exerc Nutr. 2020;3:11.

    Google Scholar 

  28. Pereira R, Pereira L, Thiebaut A, Sampaio-Jorge F, Machado M. Jump test: Comparacao da performance pelo metodo classico e atraves do foot switch. Fit Perform J. 2009;8:73–8. https://www.redalyc.org/pdf/751/75112591001.pdf.

  29. Saremi A, Gharakhanloo R, Sharghi S, Gharaati MR, Larijani B, Omidfar K. Effects of oral creatine and resistance training on serum myostatin and GASP-1. Mol Cell Endocrinol. 2010;317(1–2):25–30. https://doi.org/10.1016/j.mce.2009.12.019.

    Article  CAS  Google Scholar 

  30. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531. https://doi.org/10.1152/physrev.00031.2010.

    Article  CAS  Google Scholar 

  31. Syrotuik D, Bell G. Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders. J Strength Cond Res. 2004;18(3):610–7. https://doi.org/10.1519/12392.1.

    Article  Google Scholar 

  32. Szláma G, Trexler M, Buday L, Patthy L. K153R polymorphism in myostatin gene increases the rate of promyostatin activation by furin. FEBS Lett. 2015;589(3):295–301. https://doi.org/10.1016/j.febslet.2014.12.011.

    Article  CAS  Google Scholar 

  33. Thomas S, Reading J, Shephard R. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can J Sport Sci 1992;17:338–45. https://pubmed.ncbi.nlm.nih.gov/1330274/.

  34. Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, Kraft T, Stolz M. Creatine kinase: an enzyme with a central role in cellular energy metabolism. MAGMA. 1998;6(2–3):116–9. https://doi.org/10.1007/BF02660927./.

    Article  CAS  Google Scholar 

  35. Wax B, Kerksick C, Jagim A, Mayo J, Lyons B, Kreider R. Creatine for exercise and sports performance, with recovery considerations for healthy populations. Nutrients. 2021;13(6):1915. https://doi.org/10.3390/nu13061915.

    Article  Google Scholar 

  36. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80:1107–213. https://doi.org/10.1152/physrev.2000.80.3.1107.

    Article  CAS  Google Scholar 

  37. Yang N, MacArthur D, Gulbin J, Hahn A, Beggs A, Easteal S, North K. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627–31. https://doi.org/10.1086/377590.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very thankful to the subjects who made this study possible and who endured the inconvenience of this investigation.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation and data collection were performed by DM, CGMS, DR and MM; data analysis were performed by DM, CGMS, DR, RGB, MDR, DP, CC and MM. The first draft of the manuscript was written by DM, CGMS and MM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marco Machado.

Ethics declarations

Conflict of interest

DM, CGMS, DR, RGB, MDR, CC, and MM declare no competing interests. DGC has conducted industry sponsored research involving creatine supplementation, received creatine donation for scientific studies and travel support for presentations involving creatine supplementation at scientific conferences. In addition, DGC serves on the Scientific Advisory Board for Alzchem (a company which manufactures creatine). SCF has served as a scientific advisor for a company that sells creatine products.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattos, D., Santos, C.G.M., Forbes, S.C. et al. Individual Responses to Creatine Supplementation on Muscular Power is Modulated by Gene Polymorphisms in Military Recruits. J. of SCI. IN SPORT AND EXERCISE 5, 70–76 (2023). https://doi.org/10.1007/s42978-022-00165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-022-00165-1

Keywords

Navigation