Skip to main content
Log in

High-Intensity Interval Training Prescribed Within the Secondary Severe-Intensity Domain Improves Critical Speed But Not Finite Distance Capacity

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

Improvements in D′ (the fatigability constant for running) subsequent to training interventions remain elusive. High-intensity interval training (HIIT) within the severe intensity domain for short durations (< 2-min) have been theorized to improve D′. The purpose of the present study was to assess this in a group of moderately trained individuals.

Methods

Eighteen participants completed graded exercise testing (GXT), 40-m sprint testing and a 3-min all-out test (3MT) for running to determine key mechanistic and physiological parameters. Participants were randomly assigned into one of two groups based on intensity prescription (G140% = 140% of critical speed [CS]), or time intervals (G90-s = 90-s) to complete a twice-weekly training intervention for 6-weeks followed by re-assessment.

Results

No between-group differences were present either prior to or following the intervention. Substantial and meaningful improvements were detected during the post-intervention period for both groups for VO2max (G140%: + 7.60%; G90-s: + 11.67%), speed evoking VO2max (sVO2max; G140%: + 4.33%; G90-s: + 2.92%), gas exchange threshold (GET; G140%: + 12.02%; G90-s: + 20.52%), speed evoking GET (sGET; G140%: + 4.17%; G90-s: + 7.92%), CS (G140%: M = 0.62 m/s; G90-s: M = 0.46 m/s), D′ (G140%: M = − 56.34 m; G90-s: M = − 18.36 m), FI% (G140% M = − 6.75%; G90-s: M = − 4.38%) and maximal distance (G140%: M = 49.67 m; G90-s: M = 58.38 m).

Conclusions

The prescribed intensities and durations were insufficient to elicit improvements in D′. Improvements in D′ may be dependent on very short-duration intervals (i.e. < 60 to 90-s) at speeds exceeding 140% CS but below maximal sprint speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Wolters Kluwer; 2018.

    Google Scholar 

  2. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting threshold by gas exchange anaerobic. J Appl Physiol. 1986;60(6):2020–7.

    Article  CAS  Google Scholar 

  3. Bergstrom HC, Housh TJ, Cochrane-Snyman KC, Jenkins NDM, Byrd MT, Switalia JR, Schmidt RJ, Johnson GO. A model for identifying intensity zones above critical velocity. J Strength Cond Res. 2017;31(12):3260–5.

    Article  Google Scholar 

  4. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sport Med. 2013;43(5):313–38. https://doi.org/10.1007/s40279-013-0029-x.

    Article  Google Scholar 

  5. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part II: anaerobic energy, neuromuscular load and practical applications. Sport Med. 2013;43(10):927–54. https://doi.org/10.1007/s40279-013-0066-5.

    Article  Google Scholar 

  6. Christensen LB, Johnson RB, Turner LA. Research methods, design and analysis. 12th ed. Harlow: Pearson Education Limited; 2015.

    Google Scholar 

  7. Clark IE, West BM, Reynolds SK, Murray SR, Pettitt RW. Applying the critical velocity model for an off-season interval training program. J Strength Cond Res. 2013;27(12):3335–41.

    Article  Google Scholar 

  8. Courtright SP, Williams JL, Clark IE, Pettitt RW, Dicks ND. Monitoring interval-training responses for swimming using the 3-min all-out exercise test. Int J Exerc Sci. 2016;9(5):545–53.

    Google Scholar 

  9. Craig JC, Vanhatalo A, Burnley M, Jones AM, Poole DC. Critical power: possibly the most important fatigue threshold in exercise physiology. London: Elsevier Inc.; 2019.

    Book  Google Scholar 

  10. Cumming G, Calin-Jageman R. Introduction to the new statistics: estimation, open science, and beyond. Taylor and Francis, New York: Routledge; 2017.

    Google Scholar 

  11. Ferretti G. Energetics of muscular exercise. London: Springer International Publishing; 2015.

    Book  Google Scholar 

  12. Fukuba Y, Whipp BJ. A metabolic limit on the ability to make up for lost time in endurance events. J Appl Physiol. 1999;87(2):853–61.

    Article  CAS  Google Scholar 

  13. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sport Med. 2001;31(10):725–41. https://doi.org/10.2165/00007256-200131100-00003.

    Article  CAS  Google Scholar 

  14. Jamnick NA, By S, Pettitt CD, Pettitt RW. Comparison of the YMCA and a custom submaximal exercise test for determining VO2max. Med Sci Sports Exerc. 2016;48(2):254–9. https://doi.org/10.1249/MSS.0000000000000763.

    Article  PubMed  Google Scholar 

  15. Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep. 2019;7(10):1–16. https://doi.org/10.14814/phy2.14098.

    Article  Google Scholar 

  16. Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14(4):321–7. https://doi.org/10.1080/02640419608727717.

    Article  CAS  PubMed  Google Scholar 

  17. Jones AM, Vanhatalo A. The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sport Med. 2017;47(s1):65–78. https://doi.org/10.1007/s40279-017-0688-0.

    Article  Google Scholar 

  18. Jones AM, Wilkerson DP, Dimenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “ critical power ” assessed using 31 P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):585–93. https://doi.org/10.1152/ajpregu.00731.2007.

    Article  CAS  Google Scholar 

  19. Kirkeberg JM, Dalleck LC, Kamphoff CS, Pettitt RW. Validity of 3 protocols for verifying VO2max. Int J Sports Med. 2011;32(4):266–70. https://doi.org/10.1055/s-0030-1269914.

    Article  CAS  PubMed  Google Scholar 

  20. Kordi M, Menzies C, Parker L. Relationship between power—duration parameters and mechanical and anthropometric properties of the thigh in elite cyclists. Eur J Appl Physiol. 2018;118(3):637–45. https://doi.org/10.1007/s00421-018-3807-1.

    Article  PubMed  Google Scholar 

  21. Kramer M, Clark IE, Jamnick N, Strom C, Pettitt RW. Normative data for critical speed and D′ for high-level male rugby players. J Strength Cond Res. 2018;32(3):783–9.

    Article  Google Scholar 

  22. Kramer M, Du Randt R, Watson M, Pettitt RW. Bi-exponential modeling derives novel parameters for the critical speed concept. Physiol Rep. 2019;7(4):e13993. https://doi.org/10.14814/phy2.13993.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kramer M, Watson M, Du Randt R, Pettitt RW. Critical speed as a measure of aerobic fitness for male rugby union players. Int J Sports Physiol Perform. 2019;8:518–24.

    Article  Google Scholar 

  24. Miura A, Kino F, Kajitani S, Sato H, Sato H, Fukuba Y. The effect of oral creatine supplementation on the curvature constant parameter of the power-duration curve for cycle ergometry in humans. Jpn J Physiol. 1999;49(2):169–74.

    Article  CAS  Google Scholar 

  25. Muniz-Pumares D, Karsten B, Triska C, Glaister M. Methodological approaches and related challenges associated with the determination of critical power and curvature constant. J Strength Cond Res. 2019;32(2):584–96.

    Article  Google Scholar 

  26. Nakahara H, Ueda SY, Miyamoto T. Low-frequency severe-intensity interval training improves cardiorespiratory functions. Med Sci Sports Exerc. 2015;47(4):789–798. https://doi.org/10.1249/MSS.0000000000000477.

    Article  PubMed  Google Scholar 

  27. Pettitt RW, Jamnick N, Clark IE. 3-min all-out exercise test for running. Int J Sports Med. 2012;33(6):426–31.

    Article  CAS  Google Scholar 

  28. Pettitt RW, Placek AM, Clark IE, Jamnick NA, Murray SR. Sensitivity of prescribing high-intensity, interval training using the critical power concept. Int J Exerc Sci. 2015;8(3):202–22.

    Google Scholar 

  29. Poole D, Burnley M, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sport Exerc. 2016;48(11):2320–34. https://doi.org/10.1249/MSS.0000000000000939.

    Article  CAS  Google Scholar 

  30. Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933–96. https://doi.org/10.1002/cphy.c100072.

    Article  PubMed  Google Scholar 

  31. Rossiter HB. Exercise: kinetic considerations for gas exchange. Compr Physiol. 2011;1(1):203–44. https://doi.org/10.1002/cphy.c090010.

    Article  Google Scholar 

  32. Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, De VES, Morin JB. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sport. 2016;26(6):648–58. https://doi.org/10.1111/sms.12490.

    Article  CAS  Google Scholar 

  33. Scharhag-Rosenberger F, Meyer T, Gäßler N, Faude O, Kindermann W. Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J Sci Med Sport. 2010;13(1):74–9. https://doi.org/10.1016/j.jsams.2008.12.626.

    Article  PubMed  Google Scholar 

  34. Seiler S, Tønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13(13):32–533.

    Google Scholar 

  35. Sundberg CW, Fitts RH. Bioenergetic basis of skeletal muscle fatigue. Curr Opin Psychol. 2019;10:118–27. https://doi.org/10.1016/j.cophys.2019.05.004.

    Article  Google Scholar 

  36. Vanhatalo A, Jones AM. Influence of creatine supplementation on the parameters of the “all-out critical power test”. J Exerc Sci Fit. 2009;7(1):9–17. https://doi.org/10.1016/S1728-869X(09)60002-2.

    Article  Google Scholar 

  37. Vanhatalo A, Jones AM, Burnley M. Application of critical power in sport. Int J Sports Physiol Perform. 2011;6(1):128–36.

    Article  Google Scholar 

  38. Winter DA. Biomechanics and motor control of human movement. 4th ed. Waterloo: Wiley; 2009.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MK conceived the study, performed the data analysis, and drafted and revised the manuscript. EJT completed data collection, contributed to data analysis and interpretation as well as drafting and revising the manuscript. RWP contributed to data interpretation and helped to draft and revise the manuscript. All authors have read and approved the final version of the manuscript and agree with the order of the presentation of the authors.

Corresponding author

Correspondence to Mark Kramer.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, E.J., Pettitt, R.W. & Kramer, M. High-Intensity Interval Training Prescribed Within the Secondary Severe-Intensity Domain Improves Critical Speed But Not Finite Distance Capacity. J. of SCI. IN SPORT AND EXERCISE 2, 154–166 (2020). https://doi.org/10.1007/s42978-020-00053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-020-00053-6

Keywords

Navigation