Skip to main content
Log in

Resistance Exercise Increases the Regulation of Skeletal Muscle FSTL1 Consequently Improving Cardiac Angiogenesis in Rats with Myocardial Infarctions

  • Original article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate whether skeletal muscle-derived follistatin-like 1 (FSTL1) reaches the heart and exerts the angiogenetic function in rats suffering myocardial infarctions (MI) after exercise intervention.

Methods

Forty-eight male adult Sprague–Dawley rats were randomly divided into four groups. MI was provoked by ligation of left anterior descending coronary artery. MI rats underwent adeno-associated virus injection of FST1 in tibialis anterior muscle and 4 weeks of resistance exercise via a tail-suspended incremental weight-climbing method (0–75% body weight, daily load increased by 10%; 1 h/day, 5 day/w). Heart function was evaluated by hemodynamics including LVSP, LVEDP and ± dP/dt max; the cross-sectional area of muscle cells and myocardium fibrosis were analyzed by DiI and Masson’s staining, respectively; the FSTL1 expression, endothelial cell proliferation and angiogenesis were visualized by immunofluorescence staining; and protein expression was quantified by Western blotting.

Results

Resistance exercise reverted MI-induced skeletal muscle atrophy, increased muscle FSTL1 expression and stimulated skeletal muscle derived FSTL1 entering into the MI heart via blood circulation. The overexpression of skeletal muscle FSTL1 improved myocardial endothelial cell proliferation, increased small vessel density in the fibrotic border, inhibited myocardial fibrosis and improved heart function in the MI rats after the exercise intervention. Meanwhile, DIP2A-PI3K-Akt-mTOR, Erk1/2 and TGFβ-Smad2/3 pathways were activated in the myocardium.

Conclusion

Resistance exercise stimulates skeletal muscle derived FSTL1 to reach the myocardium which makes a positive contribution to cardioprotection in MI rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American, Physiological Society, and Medical Association General Assembly World. Guiding principles for research involving animals and human beings. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R281–3.

    Article  Google Scholar 

  2. Agarwal M, Singh S, Narayan J, Pandey S, Tiwari S, Sharma P. Cardiovascular response and serum interleukin-6 level in concentric vs eccentric exercise. J Clin Diagn Res. 2017;11(4):CC04–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Altekoester AK, Harvey RP. Bioengineered FSTL1 patches restore cardiac function following myocardial infarction. Trends Mol Med. 2015;21(12):731–3.

    Article  CAS  Google Scholar 

  4. Boa BCS, Yudkin JS, van Hinsbergh VWM, Bouskela E, Eringa EC. Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function. Br J Pharmacol. 2017;174(20):3466–81.

    Article  CAS  Google Scholar 

  5. Bortoluzzi S, Scannapieco P, Cestaro A, Danieli GA, Schiaffino S. Computational reconstruction of the human skeletal muscle secretome. Proteins. 2006;62(3):776–92.

    Article  CAS  Google Scholar 

  6. Chirico EN, Ding D, Muthukumaran G, Houser SR, Starosta T, Mu A, Margulies KB, Libonati JR. Acute aerobic exercise increases exogenously infused bone marrow cell retention in the heart. Physiol Rep. 2015;3(10):e12566.

    Article  Google Scholar 

  7. De Souza RW, Aguiar AF, Carani FR, Campos GE, Padovani CR, Silva MD. High-intensity resistance training with insufficient recovery time between bouts induce atrophy and alterations in myosin heavy chain content in rat skeletal muscle. Anat Rec (Hoboken). 2011;294(8):1393–400.

    Article  Google Scholar 

  8. El-Armouche A, Ouchi N, Tanaka K, Doros G, Wittkopper K, Schulze T, Eschenhagen T, Walsh K, Sam F. Follistatin-like 1 in chronic systolic heart failure: a marker of left ventricular remodeling. Circ Heart Fail. 2011;4(5):621–7.

    Article  Google Scholar 

  9. Esposito G, Schiattarella GG, Perrino C, Cattaneo F, Pironti G, Franzone A, Gargiulo G, Magliulo F, Serino F, Carotenuto G, Sannino A, Ilardi F, Scudiero F, Brevetti L, Oliveti M, Giugliano G, Del Giudice C, Ciccarelli M, Renzone G, Scaloni A, Zambrano N, Trimarco B. Dermcidin: a skeletal muscle myokine modulating cardiomyocyte survival and infarct size after coronary artery ligation. Cardiovasc Res. 2015;107(4):431–41.

    Article  Google Scholar 

  10. Gill R, Kuriakose R, Gertz ZM, Salloum FN, Xi L, Kukreja RC. Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol Cell Biochem. 2015;402(1–2):41–9.

    Article  CAS  Google Scholar 

  11. Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol. 2017;34:49–55.

    Article  CAS  Google Scholar 

  12. Gonzalez AM, Hoffman JR, Stout JR, Fukuda DH, Willoughby DS. Intramuscular anabolic signaling and endocrine response following resistance exercise: implications for muscle hypertrophy. Sports Med. 2016;46(5):671–85.

    Article  Google Scholar 

  13. Gorgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem. 2013;119(2):75–80.

    Article  Google Scholar 

  14. Hagg A, Colgan TD, Thomson RE, Qian H, Lynch GS, Gregorevic P. Using AAV vectors expressing the beta2-adrenoceptor or associated Galpha proteins to modulate skeletal muscle mass and muscle fibre size. Sci Rep. 2016;6:23042.

    Article  CAS  Google Scholar 

  15. Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteom. 2010;9(11):2482–96.

    Article  CAS  Google Scholar 

  16. Jia D, Cai M, Xi Y, Du S, Zhenjun T. Interval exercise training increases LIF expression and prevents myocardial infarction-induced skeletal muscle atrophy in rats. Life Sci. 2018;193:77–86.

    Article  CAS  Google Scholar 

  17. Kim HJ, Lee WJ. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats. J Exerc Nutr Biochem. 2017;21(3):19–25.

    Article  Google Scholar 

  18. Kim HJ, Song W. Resistance training increases fibroblast growth factor-21 and irisin levels in the skeletal muscle of Zucker diabetic fatty rats. J Exerc Nutrition Biochem. 2017;21(3):50–4.

    Article  Google Scholar 

  19. Kraemer WJ, Flanagan SD, Volek JS, Nindl BC, Vingren JL, Dunn-Lewis C, Comstock BA, Hooper DR, Szivak TK, Looney DP, Maresh CM, Hymer WC. Resistance exercise induces region-specific adaptations in anterior pituitary gland structure and function in rats. J Appl Physiol (1985). 2013;115(11):1641–7.

    Article  CAS  Google Scholar 

  20. Lara-Pezzi E, Felkin LE, Birks EJ, Sarathchandra P, Panse KD, George R, Hall JL, Yacoub MH, Rosenthal N, Barton PJ. Expression of follistatin-related genes is altered in heart failure. Endocrinology. 2008;149(11):5822–7.

    Article  CAS  Google Scholar 

  21. Liang X, Hu Q, Li B, McBride D, Bian H, Spagnoli P, Chen D, Tang J, Zhang JH. Follistatin-like 1 attenuates apoptosis via disco-interacting protein 2 homolog A/Akt pathway after middle cerebral artery occlusion in rats. Stroke. 2014;45(10):3048–54.

    Article  CAS  Google Scholar 

  22. Lim S, McMahon CD, Matthews KG, Devlin GP, Elston MS, Conaglen JV. Absence of myostatin improves cardiac function following myocardial infarction. Heart Lung Circ. 2017. https://doi.org/10.1016/j.hlc.2017.05.138.

    Article  PubMed  Google Scholar 

  23. Medeiros WM, de Luca FA, de Figueredo Junior AR, Mendes FA, Gun C. Heart rate recovery improvement in patients following acute myocardial infarction: exercise training, beta-blocker therapy or both. Clin Physiol Funct Imaging. 2017. https://doi.org/10.1111/cpf.12420.

    Article  PubMed  Google Scholar 

  24. Morland C, Andersson KA, Haugen OP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V, Diget EH, Kennedy LH, Stolen T, Hennestad E, Moldestad O, Cai Y, Puchades M, Offermanns S, Vervaeke K, Bjoras M, Wisloff U, Storm-Mathisen J, Bergersen LH. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun. 2017;8:15557.

    Article  CAS  Google Scholar 

  25. Muthuramu I, Lox M, Jacobs F, De Geest B. Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure. J Vis Exp. 2014. https://doi.org/10.3791/52206.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, Kito T, Maruyama S, Yuasa D, Matsuo K, Enomoto T, Uemura Y, Miyabe M, Ishii M, Yamamoto T, Shimizu Y, Walsh K, Murohara T. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation. 2012;126(14):1728–38.

    Article  Google Scholar 

  27. Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation. 2008;117(24):3099–108.

    Article  CAS  Google Scholar 

  28. Ouchi N, Asaumi Y, Ohashi K, Higuchi A, Sono-Romanelli S, Oshima Y, Walsh K. DIP2A functions as a FSTL1 receptor. J Biol Chem. 2010;285(10):7127–34.

    Article  CAS  Google Scholar 

  29. Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y, Walsh K. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem. 2008;283(47):32802–11.

    Article  CAS  Google Scholar 

  30. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65.

    Article  CAS  Google Scholar 

  31. Ribeiro F, Ribeiro IP, Alves AJ, Ceu Monteiro M, Oliveira NL, Oliveira J, Amado F, Remiao F, Duarte JA. Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review. Am J Phys Med Rehabil. 2013;92(11):1020–30.

    Article  Google Scholar 

  32. Rodrigues MF, Stotzer US, Domingos MM, Deminice R, Shiguemoto GE, Tomaz LM, Sousa NM, Ferreira FC, Leite RD, Selistre-de-Araujo HS, Jordao-Junior AA, Baldissera V, Perez SE. Effects of ovariectomy and resistance training on oxidative stress markers in the rat liver. Clinics (Sao Paulo). 2013;68(9):1247–54.

    Article  Google Scholar 

  33. Ross MD, Wekesa AL, Phelan JP, Harrison M. Resistance exercise increases endothelial progenitor cells and angiogenic factors. Med Sci Sports Exerc. 2014;46(1):16–23.

    Article  CAS  Google Scholar 

  34. Serrati S, Margheri F, Pucci M, Cantelmo AR, Cammarota R, Dotor J, Borras-Cuesta F, Fibbi G, Albini A, Del Rosso M. TGFbeta1 antagonistic peptides inhibit TGFbeta1-dependent angiogenesis. Biochem Pharmacol. 2009;77(5):813–25.

    Article  CAS  Google Scholar 

  35. Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011;378(9792):704–12.

    Article  CAS  Google Scholar 

  36. Shimano M, Ouchi N, Nakamura K, van Wijk B, Ohashi K, Asaumi Y, Higuchi A, Pimentel DR, Sam F, Murohara T, van den Hoff MJ, Walsh K. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc Natl Acad Sci USA. 2011;108(43):E899–906.

    Article  CAS  Google Scholar 

  37. Stranska Z, Svacina S. Myokines—muscle tissue hormones. Vnitr Lek. 2015;61(4):365–8.

    CAS  PubMed  Google Scholar 

  38. Sun Z, Schriewer J, Tang M, Marlin J, Taylor F, Shohet RV, Konorev EA. The TGF-beta pathway mediates doxorubicin effects on cardiac endothelial cells. J Mol Cell Cardiol. 2016;90:129–38.

    Article  CAS  Google Scholar 

  39. Sung B, Hwang SY, Kim MJ, Kim M, Jeong JW, Kim CM, Chung HY, Kim ND. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats. Int J Mol Med. 2015;36(3):792–800.

    Article  CAS  Google Scholar 

  40. Tanaka K, Valero-Munoz M, Wilson RM, Essick EE, Fowler CT, Nakamura K, van den Hoff M, Ouchi N, Sam F. Follistatin like 1 regulates hypertrophy in heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2016;1(4):207–21.

    Article  Google Scholar 

  41. Trombetti A, Reid KF, Hars M, Herrmann FR, Pasha E, Phillips EM, Fielding RA. Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life. Osteoporos Int. 2016;27(2):463–71.

    Article  CAS  Google Scholar 

  42. van der Laan AM, Piek JJ, van Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol. 2009;6(8):515–23.

    Article  Google Scholar 

  43. Vukusic K, Asp J, Henriksson HB, Brisby H, Lindahl A, Sandstedt J. Physical exercise affects slow cycling cells in the rat heart and reveals a new potential niche area in the atrioventricular junction. J Mol Histol. 2015;46(4–5):387–98.

    Article  Google Scholar 

  44. Wang B, Li J, Fu FH, Chen C, Zhu X, Zhou L, Jiang X, Xiao X. Construction and analysis of compact muscle-specific promoters for AAV vectors. Gene Ther. 2008;15(22):1489–99.

    Article  CAS  Google Scholar 

  45. Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, Zhu W, Fajardo G, Noseda M, Nakamura K, Tian X, Liu Q, Wang A, Matsuura Y, Bushway P, Cai W, Savchenko A, Mahmoudi M, Schneider MD, van den Hoff MJ, Butte MJ, Yang PC, Walsh K, Zhou B, Bernstein D, Mercola M, Ruiz-Lozano P. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85.

    Article  CAS  Google Scholar 

  46. Xi Y, Cai M, Tian Z. Different exercise modes up-regulate FSTL1 and induce angiogenesis in the heart with myocardial infarction. China Sport Sci. 2016;36(10):32–9.

    Google Scholar 

  47. Xi Y, Gong DW, Tian Z. FSTL1 as a potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Sci Rep. 2016;6:32424.

    Article  CAS  Google Scholar 

  48. Xiao J, Chen P, Qu Y, Yu P, Yao J, Wang H, Fu S, Bei Y, Chen Y, Che L, Xu J. Telocytes in exercise-induced cardiac growth. J Cell Mol Med. 2016;20(5):973–9.

    Article  CAS  Google Scholar 

  49. Xu JG, Gong T, Wang YY, Zou T, Heng BC, Yang YQ, Zhang CF. Inhibition of TGF-beta signaling in SHED enhances endothelial differentiation. J Dent Res. 2018;97(2):218–25.

    Article  CAS  Google Scholar 

  50. Yang Y, Mu T, Li T, Xie S, Zhou J, Liu M, Li D. Effects of FSTL1 on the proliferation and motility of breast cancer cells and vascular endothelial cells. Thorac Cancer. 2017;8(6):606–12.

    Article  Google Scholar 

  51. Yoon JH, Yea K, Kim J, Choi YS, Park S, Lee H, Lee CS, Suh PG, Ryu SH. Comparative proteomic analysis of the insulin-induced L6 myotube secretome. Proteomics. 2009;9(1):51–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 31371199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjun Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Hao, M. & Tian, Z. Resistance Exercise Increases the Regulation of Skeletal Muscle FSTL1 Consequently Improving Cardiac Angiogenesis in Rats with Myocardial Infarctions. J. of SCI. IN SPORT AND EXERCISE 1, 78–87 (2019). https://doi.org/10.1007/s42978-019-0009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0009-4

Keywords

Navigation