Skip to main content
Log in

The Application of Heavy Strength Training in Relative Energy Deficiency in Sport

  • Review Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

A combination of high levels of physical activity, low sex hormone concentrations and subsequent low bone mineral density is commonplace in athletic populations. Low bone mineral density can lead to an increased risk of stress reactions or fractures, which can significantly reduce sport participation time. The use of heavy strength training has been effective at increasing bone mineral density in older, frail osteoporotic populations, and there is evidence that it would also be effective in athletic populations with low bone density. In addition to potentially reducing the risk of stress reactions and fractures, heavy strength training may be beneficial for endurance performance, including when being used as a replacement for some of the endurance activities. Thus, individuals exhibiting symptoms associated with the Female Athlete Triad, the Exercise Hypogondal Male Condition or Relative Energy Deficiency in Sports should consider implementing heavy strength training as part of their exercise regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes KR, Kilding AE. Commentaries on viewpoint: use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance. J Appl Physiol (1985). 2018;125(2):676–82. https://doi.org/10.1152/japplphysiol.00638.2018.

    Article  Google Scholar 

  2. Barrack MT, Fredericson M, Tenforde AS, Nattiv A. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br J Sports Med. 2017;51(3):200–5. https://doi.org/10.1136/bjsports-2016-096698.

    Article  PubMed  Google Scholar 

  3. Beck BR, Daly RM, Singh MA, Taaffe DR. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport. 2017;20(5):438–45. https://doi.org/10.1016/j.jsams.2016.10.001.

    Article  PubMed  Google Scholar 

  4. Bemben DA, Bemben MG. Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int. 2011;22(1):179–86. https://doi.org/10.1007/s00198-010-1182-9.

    Article  CAS  PubMed  Google Scholar 

  5. Benedetti MG, Furlini G, Zati A, Letizia Mauro G. The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed Res Int. 2018;2018:4840531. https://doi.org/10.1155/2018/4840531.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, Snyder PJ, Swerdloff RS, Wu FC, Yialamas MA. Testosterone therapy in men with hypogonadism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):1715–44. https://doi.org/10.1210/jc.2018-00229.

    Article  PubMed  Google Scholar 

  7. Blagrove RC, Howatson G, Hayes PR. Effects of strength training on the physiological determinants of middle- and long-distance running performance: a systematic review. Sports Med. 2018;48(5):1117–49. https://doi.org/10.1007/s40279-017-0835-7.

    Article  PubMed  Google Scholar 

  8. Cobb KL, Bachrach LK, Greendale G, Marcus R, Neer RM, Nieves J, Sowers MF, Brown BW Jr, Gopalakrishnan G, Luetters C, Tanner HK, Ward B, Kelsey JL. Disordered eating, menstrual irregularity, and bone mineral density in female runners. Med Sci Sports Exerc. 2003;35(5):711–9. https://doi.org/10.1249/01.mss.0000064935.68277.e7.

    Article  PubMed  Google Scholar 

  9. Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980;12(5):357–60.

    Article  CAS  Google Scholar 

  10. Conroy BP, Kraemer WJ, Maresh CM, Fleck SJ, Stone MH, Fry AC, Miller PD, Dalsky GP. Bone mineral density in elite junior Olympic weightlifters. Med Sci Sports Exerc. 1993;25(10):1103–9.

    Article  CAS  Google Scholar 

  11. De Souza MJ, Miller BE, Loucks AB, Luciano AA, Pescatello LS, Campbell CG, Lasley BL. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83(12):4220–32. https://doi.org/10.1210/jcem.83.12.5334.

    Article  PubMed  Google Scholar 

  12. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, Gibbs JC, Olmsted M, Goolsby M, Matheson G; Expert Panel. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014;48(4):289. https://doi.org/10.1136/bjsports-2013-093218.

    Article  PubMed  Google Scholar 

  13. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, Gibbs JC, Olmsted M, Goolsby M, Matheson G; Female Athlete Triad Coalition; American College of Sports Medicine; American Medical Society for Sports Medicine; American Bone Health Alliance. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, CA, May 2012, and 2nd International Conference held in Indianapolis, IN, May 2013. Clin J Sport Med. 2014;24(2):96–119. https://doi.org/10.1097/JSM.0000000000000085.

    Article  PubMed  Google Scholar 

  14. De Souza MJ, Toombs RJ, Scheid JL, O’Donnell E, West SL, Williams NI. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod. 2010;25(2):491–503. https://doi.org/10.1093/humrep/dep411.

    Article  CAS  PubMed  Google Scholar 

  15. De Souza MJ, Williams NI, Nattiv A, Joy E, Misra M, Loucks AB, Matheson G, Olmsted MP, Barrack M, Mallinson RJ, Gibbs JC, Goolsby M, Nichols JF, Drinkwater B, Sanborn C, Agostini R, Otis CL, Johnson MD, Hoch AZ, Alleyne JM, Wadsworth LT, Koehler K, VanHeest J, Harvey P, Kelly AK, Fredericson M, Brooks GA, O'Donnell E, Callahan LR, Putukian M, Costello L, Hecht S, Rauh MJ, McComb J. Misunderstanding the female athlete triad: refuting the IOC consensus statement on Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(20):1461–5. https://doi.org/10.1136/bjsports-2014-093958.

    Article  PubMed  Google Scholar 

  16. Duplanty AA, Levitt DE, Hill DW, McFarlin BK, DiMarco NM, Vingren JL. Resistance training is associated with higher bone mineral density among young adult male distance runners independent of physiological factors. J Strength Cond Res. 2018;32(6):1594–600. https://doi.org/10.1519/JSC.0000000000002504.

    Article  PubMed  Google Scholar 

  17. Feicht CB, Johnson TS, Martin BJ, Sparkes KE, Wagner WW Jr. Secondary amenorrhoea in athletes. Lancet. 1978;2(8100):1145–6.

    Article  CAS  Google Scholar 

  18. Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45(5):985–96. https://doi.org/10.1249/MSS.0b013e31827e1bdc.

    Article  PubMed  Google Scholar 

  19. Hackney AC, Dolny DG, Ness RJ. Comparison of reproductive hormonal profiles in select athletic groups. Biol Sport. 1988;4(5):297–304.

    Google Scholar 

  20. Hackney AC, Lane AR. Low testosterone in male endurance-trained distance runners: impact of years in training. Hormones (Athens). 2018;17(1):137–9. https://doi.org/10.1007/s42000-018-0010-z.

    Article  Google Scholar 

  21. Hackney AC, Moore AW, Brownlee KK. Testosterone and endurance exercise: development of the “exercise-hypogonadal male condition”. Acta Physiol Hung. 2005;92(2):121–37. https://doi.org/10.1556/aphysiol.92.2005.2.3.

    Article  CAS  PubMed  Google Scholar 

  22. Hackney AC, Sinning WE, Bruot BC. Hypothalamic-pituitary-testicular axis function in endurance-trained males. Int J Sports Med. 1990;11(4):298–303. https://doi.org/10.1055/s-2007-1024811.

    Article  CAS  PubMed  Google Scholar 

  23. Hooper DR, Kraemer WJ, Saenz C, Schill KE, Focht BC, Volek JS, Maresh CM. The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition. Eur J Appl Physiol. 2017;117(7):1349–57. https://doi.org/10.1007/s00421-017-3623-z.

    Article  CAS  PubMed  Google Scholar 

  24. Hooper DR, Kraemer WJ, Stearns RL, Kupchak BR, Volk BM, DuPont WH, Maresh CM, Casa DJ. Evidence of the exercise hypogonadal male condition at the 2011 Kona Ironman World Championships. Int J Sports Physiol Perform. 2019;14(2):170–5. https://doi.org/10.1123/ijspp.2017-047.

    Article  PubMed  Google Scholar 

  25. Hooper DR, Tenforde AS, Hackney AC. Treating exercise-associated low testosterone and its related symptoms. Phys Sportsmed. 2018;46(4):427–34. https://doi.org/10.1080/00913847.2018.1507234.

    Article  PubMed  Google Scholar 

  26. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40. https://doi.org/10.1359/JBMR.040410.

    Article  PubMed  Google Scholar 

  27. Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol (1985). 1991;70(2):683–7. https://doi.org/10.1152/jappl.1991.70.2.683.

    Article  CAS  Google Scholar 

  28. Karlsson MK, Johnell O, Obrant KJ. Bone mineral density in weight lifters. Calcif Tissue Int. 1993;52(3):212–5.

    Article  CAS  Google Scholar 

  29. Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int. 1995;57(5):325–8.

    Article  Google Scholar 

  30. Keay N, Francis G, Hind K. Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. BMJ Open Sport Exerc Med. 2018;4(1):e000424. https://doi.org/10.1136/bmjsem-2018-000424.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Klomsten Andersen O, Clarsen B, Garthe I, Morland M, Stensrud T. Bone health in elite Norwegian endurance cyclists and runners: a cross-sectional study. BMJ Open Sport Exerc Med. 2018;4(1):e000449. https://doi.org/10.1136/bmjsem-2018-000449.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kraemer WJ, Fragala MS, Watson G, Volek JS, Rubin MR, French DN, Maresh CM, Vingren JL, Hatfield DL, Spiering BA, Yu-Ho J, Hughes SL, Case HS, Stuempfle KJ, Lehmann DR, Bailey S, Evans DS. Hormonal responses to a 160-km race across frozen Alaska. Br J Sports Med. 2008;42(2):116–20. https://doi.org/10.1136/bjsm.2007.035535.

    Article  CAS  PubMed  Google Scholar 

  33. Kupchak BR, Kraemer WJ, Hoffman MD, Phinney SD, Volek JS. The impact of an ultramarathon on hormonal and biochemical parameters in men. Wilderness Environ Med. 2014;25(3):278–88. https://doi.org/10.1016/j.wem.2014.03.013.

    Article  PubMed  Google Scholar 

  34. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311. https://doi.org/10.1210/jc.2002-020369.

    Article  CAS  PubMed  Google Scholar 

  35. Mathis SL, Caputo JL. Resistance training is associated with higher lumbar spine and hip bone mineral density in competitive male cyclists. J Strength Cond Res. 2018;32(1):274–9. https://doi.org/10.1519/JSC.0000000000002209.

    Article  PubMed  Google Scholar 

  36. McColl EM, Wheeler GD, Gomes P, Bhambhani Y, Cumming DC. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol (Oxf). 1989;31(5):617–21.

    Article  CAS  Google Scholar 

  37. Mountjoy M, Sundgot-Borgen J, Burke L, Ackerman KE, Blauwet C, Constantini N, Lebrun C, Lundy B, Melin A, Meyer N, Sherman R, Tenforde AS, Torstveit MK, Budgett R. International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Int J Sport Nutr Exerc Metab. 2018;28(4):316–31. https://doi.org/10.1123/ijsnem.2018-0136.

    Article  PubMed  Google Scholar 

  38. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A. The IOC consensus statement: beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7. https://doi.org/10.1136/bjsports-2014-093502.

    Article  PubMed  Google Scholar 

  39. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP; American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82. https://doi.org/10.1249/mss.0b013e318149f111.

    Article  PubMed  Google Scholar 

  40. Otis CL, Drinkwater B, Johnson M, Loucks A, Wilmore J. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 1997;29(5):i–ix.

    Article  Google Scholar 

  41. Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34(7):465–85. https://doi.org/10.2165/00007256-200434070-00005.

    Article  PubMed  Google Scholar 

  42. Scofield KL, Hecht S. Bone health in endurance athletes: runners, cyclists, and swimmers. Curr Sports Med Rep. 2012;11(6):328–34. https://doi.org/10.1249/jsr.0b013e3182779193.

    Article  PubMed  Google Scholar 

  43. Shepherd JA, Schousboe JT, Broy SB, Engelke K. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18(3):274–86. https://doi.org/10.1016/j.jocd.2015.06.013.

    Article  PubMed  Google Scholar 

  44. Skovgaard C, Christensen PM, Larsen S, Andersen TR, Thomassen M, Bangsbo J. Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners. J Appl Physiol (1985). 2014;117(10):1097–109. https://doi.org/10.1152/japplphysiol.01226.2013.

    Article  Google Scholar 

  45. Temme KE, Hoch AZ. Recognition and rehabilitation of the female athlete triad/tetrad: a multidisciplinary approach. Curr Sports Med Rep. 2013;12(3):190–9. https://doi.org/10.1249/JSR.0b013e318296190b.

    Article  PubMed  Google Scholar 

  46. Tenforde AS, Barrack MT, Nattiv A, Fredericson M. Parallels with the female athlete triad in male athletes. Sports Med. 2016;46(2):171–82. https://doi.org/10.1007/s40279-015-0411-y.

    Article  PubMed  Google Scholar 

  47. Tenforde AS, Carlson JL, Sainani KL, Chang AO, Kim JH, Golden NH, Fredericson M. Sport and triad risk factors influence bone mineral density in collegiate athletes. Med Sci Sports Exerc. 2018;50(12):2536–43. https://doi.org/10.1249/MSS.0000000000001711.

    Article  PubMed  Google Scholar 

  48. Vorup J, Tybirk J, Gunnarsson TP, Ravnholt T, Dalsgaard S, Bangsbo J. Effect of speed endurance and strength training on performance, running economy and muscular adaptations in endurance-trained runners. Eur J Appl Physiol. 2016;116(7):1331–41. https://doi.org/10.1007/s00421-016-3356-4.

    Article  PubMed  Google Scholar 

  49. Watson SL, Weeks BK, Weis LJ, Harding AT, Horan SA, Beck BR. High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res. 2018;33(2):211–20. https://doi.org/10.1002/jbmr.3284.

    Article  PubMed  Google Scholar 

  50. Wheeler GD, Wall SR, Belcastro AN, Cumming DC. Reduced serum testosterone and prolactin levels in male distance runners. JAMA. 1984;252(4):514–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Hooper.

Ethics declarations

Conflict of interest

The author declares no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooper, D.R. The Application of Heavy Strength Training in Relative Energy Deficiency in Sport. J. of SCI. IN SPORT AND EXERCISE 1, 195–202 (2019). https://doi.org/10.1007/s42978-019-00043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-00043-3

Keywords

Navigation