Skip to main content
Log in

Multifaceted role of TRIM21 in inflammation

  • Review
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Tripartite motif (TRIM) family members participate in a variety of cellular activities, such as intracellular signaling, development, cellular death, protein quality control, immunological defense, waste degradation, and the emergence of cancer. These proteins usually act as E3 ubiquitin ligase. The final line of resistance against infectious viruses is a cytosolic ubiquitin ligase and antibody receptor called TRIM containing 21. TRIM21, a protein with a tripartite structure, has been linked to autoimmune erythematosus, Sjogren’s disorder, and innate immunity. TRIM21 may either promote the formation of specific cancer-activating proteins, resulting in their proteasomal degradation, or it may do neither, depending on the kind of cancer and cancer-causing trigger. The current research has shown that the antiviral action of TRIM mostly depends on their role as E3-ubiquitin ligases and a significant portion of the TRIM family mediates the transmission of innate immune cell signals and the subsequent production of cytokines. We highlighted the function of TRIM family members in various inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acres B, Paul S, Haegel-Kronenberger H, Calmels B, Squiban P (2004) Therapeutic cancer vaccines. Curr Opin Mol Ther 6(1):40–47

    CAS  PubMed  Google Scholar 

  • Ahuja D, GoyalP A, Ray S (2016) Interplay between RNA-binding protein HuR and microRNA-125b regulates p53 mRNA translation in response to genotoxic stress. RNA Biol 13(11):1152–1165

    Article  PubMed  PubMed Central  Google Scholar 

  • Alomari M (2021) TRIM21–a potential novel therapeutic target in cancer. Pharmacol Res 165:105443

    Article  CAS  PubMed  Google Scholar 

  • Balaji S, Ahmed M, Lorence E, Yan F, Nomie K, Wang M (2018) NF-κB signaling and its relevance to the treatment of mantle cell lymphoma. J Hematol Oncol 11(1):1–11

    Article  CAS  Google Scholar 

  • Betin VMS, Lane JD (2009) Atg4D at the interface between autophagy and apoptosis. Autophagy 5(7):1057–1059

    Article  CAS  PubMed  Google Scholar 

  • Brauner S, Ivanchenko M, Thorlacius G, Ambrosi A, Wahren-Herlenius M (2018) The Sjögren’s syndrome-associated autoantigen Ro52/TRIM21 modulates follicular B cell homeostasis and immunoglobulin production. Clin Exp Immunol 194(3):315–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks CL, Gu W (2011) p53 regulation by ubiquitin. FEBS Lett 585(18):2803–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavazzana I, Franceschini F, Quinzanini M, Manera C, Del Papa N, Maglione W, Comina D, Radice A, Sinico R, Cattaneo R (2006) Anti-Ro/SSA antibodies in rheumatoid arthritis: clinical and immunologic associations. Clin Exp Rheumatol 24(1):59

    CAS  PubMed  Google Scholar 

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  • Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, James LC, Schuh M (2017) A method for the acute and rapid degradation of endogenous proteins. Cell 171(7):1692–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Rienzo M, Romagnoli A, Antonioli M, PiacentiniG M, Fimia M (2020) TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ 27(3):887–902

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickson C, Fletcher AJ, Vaysburd M, Yang JC, Mallery DL, Zeng J, Johnson CM, McLaughlin SH, Skehel M, Maslen S (2018) Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21. Elife 7:e32660

    Article  PubMed  PubMed Central  Google Scholar 

  • Foss S, Bottermann M, Jonsson A, Sandlie I, JamesJ LC, Andersen T (2019) TRIM21—from intracellular immunity to therapy. Front Immunol 10:2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank M, Itoh K, Fujisaku A, Pontarotti P, Mattei M, Neas B (1993) The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome 11, and its polymorphisms. Am J Hum Genet 52(1):183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fugger L, Jensen LT, Rossjohn J (2020) Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 181(1):63–80

    Article  CAS  PubMed  Google Scholar 

  • Fukuda-Kamitani TK, Kamitani T (2002) Ubiquitination of Ro52 autoantigen. Biochem Biophys Res Commmun 295(4):774–778

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Xu F, Zhang HT, Chen M, Huang W, Zhang Q, ZengLiu QL (2016) PKCα–GSK3β–NF-κB signaling pathway and the possible involvement of TRIM21 in TRAIL-induced apoptosis. Biochem Cell Biol 94(3):256–264

    Article  CAS  PubMed  Google Scholar 

  • Granito A, Muratori P, Muratori L, Pappas G, Cassani F, Worthington J, Ferri S, Quarneti C, Cipriano V, DeMolo C (2007) Antibodies to SS-A/Ro-52kD and centromere in autoimmune liver disease: a clue to diagnosis and prognosis of primary biliary cirrhosis. Aliment Pharmacol Ther 26(6):831–838

    Article  CAS  PubMed  Google Scholar 

  • Guha A, Ahuja D, Mandal SD, Parasar B, Deyasi K, Roy D, Sharma V, Willard B, GhoshP A, Ray S (2019) Integrated regulation of HuR by translation repression and protein degradation determines pulsatile expression of p53 under DNA damage. Iscience 15:342–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama S (2011) TRIM proteins and cancer. Nat Rev Cancer 11(11):792–804

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama S (2017a) TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci 42(4):297–311. https://doi.org/10.1016/j.tibs.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama S (2017b) TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci 42(4):297–311

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18(18):2195–2224

    Article  CAS  PubMed  Google Scholar 

  • Hock A, Vousden KH (2010) Regulation of the p53 pathway by ubiquitin and related proteins. Int J Biochem Cell Biol 42(10):1618–1621

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Ding X, Tian S, Chu Y, Liu Z, Li Y, Li X, Wang G, WangWang LZ (2021) TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis 12(4):391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infantino M, Manfredi M, Grossi V, Benucci M, Morozzi G, Tonutti E, Tampoia M, Bizzaro N (2017) An effective algorithm for the serological diagnosis of idiopathic inflammatory myopathies: the key role of anti-Ro52 antibodies. Clin Chim Acta 475:15–19

    Article  CAS  PubMed  Google Scholar 

  • James LC, Keeble AH, Khan Z, RhodesTrowsdale DAJ (2007) Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci 104(15):6200–6205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauharoh SNA, Saegusa J, Sugimoto T, Ardianto B, Kasagi S, Sugiyama D, Kurimoto C, Tokuno O, Nakamachi Y, Kumagai S (2012) SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production. Biochem Biophys Res Commun 417(1):582–587

    Article  CAS  PubMed  Google Scholar 

  • Jefferies C, Wynne C, Higgs R (2011) Antiviral TRIMs: friend or foe in autoimmune and autoinflammatory disease? Nat Rev Immunol 11(9):617–625

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zhao X, Zhang Q, Zhang Y, Fu X, HuWan XY (2020) Cancer-associated mutation abolishes the impact of TRIM21 on the invasion of breast cancer cells. Int J Biol Macromol 142:782–789

    Article  CAS  PubMed  Google Scholar 

  • Jones EL, LaidlawL SM, Dustin B (2021) TRIM21/Ro52-roles in innate immunity and autoimmune disease. Front Immunol 12:738473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeble AH, Khan Z, ForsterL A, James C (2008) TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Proc Natl Acad Sci 105(16):6045–6050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keown JR, Yang JX, DouglasD J, Goldstone C (2016) Characterisation of assembly and ubiquitylation by the RBCC motif of Trim5α. Sci Rep 6(1):26837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308(5728):1599–1603

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Gu W (2010) The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 17(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lagowski JP, Gao S, Raymond JH, White CR, Kulesz-Martin MF (2010) Regulation of the psoriatic chemokine CCL20 by E3 ligases Trim32 and Piasy in keratinocytes. J Invest Dermatol 130(5):1384–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang Z, De La Torre R, Barling A, Tsujikawa T, Hornick N, Hanifin J, Simpson E, WangSwanzey YE (2017) Trim32 deficiency enhances Th2 immunity and predisposes to features of atopic dermatitis. J Invest Dermatol 137(2):359–366

    Article  CAS  PubMed  Google Scholar 

  • Mallery DL, McEwan WA, Bidgood SR, Towers GJ, JohnsonL CM, James C (2010) Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci 107(46):19985–19990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massagué J (2004) G1 cell-cycle control and cancer. Nature 432(7015):298–306

    Article  PubMed  Google Scholar 

  • McEwan WA, James LC (2015) TRIM21-dependent intracellular antibody neutralization of virus infection. Prog Mol Biol Transl Sci 129:167–187

    Article  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  • MüLLER J, Maurer V, Reimers K, Vogt PM, Bucan V (2015) TRIM21, a negative modulator of LFG in breast carcinoma MDA-MB-231 cells in vitro. Int J Oncol 47(5):1634–1646

    Article  PubMed  PubMed Central  Google Scholar 

  • Napolitano L, Meroni MG (2012) TRIM family: pleiotropy and diversification through homomultimer and heteromultimer formation. IUBMB Life 64(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Ng SC, Tang W, Leong RW, Chen M, Ko Y, Studd C, Niewiadomski O, Bell S, KammH MA, de Silva J (2015) Environmental risk factors in inflammatory bowel disease: a population-based case-control study in Asia-Pacific. Gut 64(7):1063–1071

    Article  PubMed  Google Scholar 

  • Niida M, TanakaKamitani MT (2010) Downregulation of active IKKβ by Ro52-mediated autophagy. Mol Immunol 47(14):2378–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi K, Okumura F, Takahashi N, Kataoka A, Kamiyama T, Todo S, Hatakeyama S (2011) TRIM40 promotes neddylation of IKKγ and is downregulated in gastrointestinal cancers. Carcinogenesis 32(7):995–1004

    Article  CAS  PubMed  Google Scholar 

  • Ozato K, Shin DM, ChangH TH, Morse C III (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8(11):849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos C, Meyer H (2017) Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr Biol 27(24):R1330–R1341

    Article  CAS  PubMed  Google Scholar 

  • Perera S, Holt MR, MankooGautel BSM (2011) Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev Biol 351(1):46–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizon V, Rybina S, Gerbal F, Delort F, Vicart P, Baldacci G, Karsenti E (2013) MURF2B, a novel LC3-binding protein, participates with MURF2A in the switch between autophagy and ubiquitin proteasome system during differentiation of C2C12 muscle cells. PLoS ONE 8(10):e76140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy BA, van der Knaap JA, Bot AG, Mohd-Sarip A, Dekkers DH, Timmermans MA, Martens JW, DemmersC JA, Verrijzer P (2014) Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol Cell 53(3):458–470

    Article  CAS  PubMed  Google Scholar 

  • Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S (2001) The tripartite motif family identifies cell compartments. EMBO J 20(9):2140–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutjes S, Vree Egberts W, Jongen P, Van Den Hoogen F, Pruijn G, Venrooij W (1997) Anti-Ro52 antibodies frequently co-occur with anti-Jo-1 antibodies in sera from patients with idiopathic inflammatory myopathy. Clin Exp Immunol 109(1):32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabile A, Meyer AM, Wirbelauer C, Hess D, Kogel U, Scheffner M, Krek W (2006) Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein. Mol Cell Biol 26(16):5994–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomonsson S, Sonesson SE, Ottosson L, Muhallab S, Olsson T, Sunnerhagen M, Kuchroo VK, Thorén P, Herlenius E, Wahren-Herlenius M (2005) Ro/SSA autoantibodies directly bind cardiomyocytes, disturb calcium homeostasis, and mediate congenital heart block. J Exp Med 201(1):11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartor RB, Wu GD (2017) Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterol 152(2):327–339

    Article  CAS  Google Scholar 

  • Sparrer KM, Gableske S, Zurenski MA, Parker ZM, Full F, Baumgart GJ, Kato J, Pacheco-Rodriguez G, Liang C, Pornillos O (2017) TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat Microbiol 2(11):1543–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson M (2004) TRIMming HIV-1’s mainsail. Nat Immunol 5(4):355–356

    Article  CAS  PubMed  Google Scholar 

  • Strandberg L, Ambrosi A, Espinosa A, Ottosson L, Eloranta ML, Zhou W, Elfving Å, Greenfield E, Kuchroo VK, Wahren-Herlenius M (2008) Interferon-α induces up-regulation and nuclear translocation of the Ro52 autoantigen as detected by a panel of novel Ro52-specific monoclonal antibodies. J Clin Immunol 28:220–231

    Article  CAS  PubMed  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci 101(16):6062–6067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallerico R, Todaro M, Di Franco S, Maccalli C, Garofalo C, Sottile R, Palmieri C, Tirinato L, Pangigadde PN, Rocca R (2013) Human NK cells selective targeting of colon cancer–initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol 190(5):2381–2390

    Article  CAS  PubMed  Google Scholar 

  • Tomar D, Singh R, Singh AK, Pandya CD, Singh R (2012) TRIM13 regulates ER stress induced autophagy and clonogenic ability of the cells. Biochim Biophys Acta Mol Cell Res 1823:316–326

    Article  CAS  Google Scholar 

  • van Gent M, SparrerM KM, Gack U (2018) TRIM proteins and their roles in antiviral host defenses. Annu Rev Virol 5:385–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Tol S, Hage A, Giraldo MI, Bharaj P, Rajsbaum R (2017) The TRIMendous role of TRIMs in virus–host interactions. Vaccines 5(3):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinter H, Langkilde A, Ottosson V, Espinosa A, Wahren-Herlenius M, Raaby L, Johansen C, Iversen L (2017) TRIM 21 is important in the early phase of inflammation in the imiquimod-induced psoriasis-like skin inflammation mouse model. Exp Dermatol 26(8):713–720

    Article  CAS  PubMed  Google Scholar 

  • Wada K, Niida M, Tanaka M, Kamitani T (2009) Ro52-mediated monoubiquitination of IKKβ down-regulates NF-κB signalling. J Biochem 146(6):821–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert C, Morger D, Djekic A, Grütter MG, Mittl PR (2015) Crystal structure of TRIM20 C-terminal coiled-coil/B30. 2 fragment: implications for the recognition of higher order oligomers. Sci Rep 5(1):10819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E (2015) The role for autophagy in cancer. J Clin Invest 125(1):42–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Jin L, Ke Y, Fan X, Zhang T, Zhang C, Bian H, Wang G (2018a) E3 ligase Trim21 ubiquitylates and stabilizes keratin 17 to induce STAT3 activation in psoriasis. J Invest Dermatol 138(12):2568–2577

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Gao CY, Li L, Chang C, Leung PS, Gershwin ME, Lian ZX (2018b) The molecular basis of immune regulation in autoimmunity. Clin Sci 132(1):43–67

    Article  CAS  Google Scholar 

  • Yoshimi R, Chang TH, Wang H, Atsumi T, Morse HC, Ozato K (2009) Gene disruption study reveals a nonredundant role for TRIM21/Ro52 in NF-κB-dependent cytokine expression in fibroblasts. J Immunol 182(12):7527–7538

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi R, Ishigatsubo Y, Ozato K (2012) Autoantigen TRIM21/Ro52 as a possible target for treatment of systemic lupus erythematosus. Int J Rheumatol 2012:1–11

    Article  Google Scholar 

  • Zhang J, Fang L, Zhu X, Qiao Y, Yu M, Wang L, Chen Y, Yin W, Hua ZC (2012) Ro52/SSA sensitizes cells to death receptor-induced apoptosis by down-regulating c-FLIP (L). Cell Biol Int 36(5):463–468

    Article  CAS  PubMed  Google Scholar 

  • Zhang HT, Zeng Q, Wu B, Lu J, Tong KL, Lin J, Liu QY, Xu L, Yang J, Liu X (2021) TRIM21-regulated annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death Dis 12(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang W, Zheng L, Guo Q (2022) The roles and targeting options of TRIM family proteins in tumor. Front Pharmacol 13:999380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Wu W, Yu L, Yu T, Yang W, Wang P, Zhang X, Cong Y, Liu Z (2018) Tripartite motif-containing (TRIM) 21 negatively regulates intestinal mucosal inflammation through inhibiting TH1/TH17 cell differentiation in patients with inflammatory bowel diseases. J Allergy Clin Immunol 142(4):1218–1228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for all those who provided assistance in publication.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ST, AA and MBK searched the literature and wrote the initial draft. ZG and MS revised the initial draft. HA contributed to the study conception and design and edited the final draft. MBK and AA supervised the work and approved the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Babar Khawar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanveer, S., Afzal, A., Gul, Z. et al. Multifaceted role of TRIM21 in inflammation. BIOLOGIA FUTURA (2024). https://doi.org/10.1007/s42977-024-00221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42977-024-00221-7

Keywords

Navigation