Skip to main content

Advertisement

Log in

Biostimulants and their role in improving plant growth under drought and salinity

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Biostimulants are products that reduce fertiliser requirements while also stimulating plant growth and protecting crops from abiotic stress by increasing tolerance. Biostimulants such as algal or other plant extracts, protein hydrolysates, humic and fulvic acids, and other enhanced combinations have been shown to promote further growth and stress adaptability. These outcomes consist of higher yield, enhanced nutrient absorption and utilization, increased photosynthetic activity, and tolerance to both biotic and abiotic stressors. While most biostimulants have a variety of effects on plant growth, this chapter concentrates on bioprotective effects against abiotic stress. Biostimulants have the potential to make agriculture more sustainable and resilient, as well as provide an alternative to synthetic protectants, which have proven increasingly unpopular with consumers. In this regard, this chapter seeks to discuss the specific function of biostimulants that have defensive effects against abiotic stress, but also highlights the urgent need to investigate the underlying processes that cause these benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Mageed TA, Semida WM, Rady MM (2017) Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric Water Manag 193:46–54

    Article  Google Scholar 

  • Ahmad I, Pichtel J, Hayat S (eds) (2008) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley

  • Ait-El-Mokhtar M, Baslam M, Ben-Laouane R, Anli M, Boutasknit A, Mitsui T, Wahbi S, Meddich A (2020) Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Front Sustain Food Syst 4:131

    Article  Google Scholar 

  • Akbari GA, Heshmati S, Soltani E, Amini Dehaghi M (2020) Influence of seed priming on seed yield, oil content and fatty acid composition of safflower (Carthamus tinctorius L.) grown under water deficit. Int J Plant Prod 14:245–258

    Article  Google Scholar 

  • Al-Gabbiesh A, Kleinwächter M, Selmar D (2015) Influencing the contents of secondary metabolites in spice and medicinal plants by deliberately applying drought stress during their cultivation. Jordan J Biol Sci 8:1–10

    Article  CAS  Google Scholar 

  • Arslan E, Guleray AGAR, Aydin M (2019) Putrescine as a protective molecule on DNA damage and DNA methylation changes in wheat under drought. Commun Fac Sci Univ Ank Ser C Biol 28:170–187

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Avio L, Turrini A, Giovannetti M, Sbrana C (2018) Designing the ideotype mycorrhizal symbionts for the production of healthy food. Front Plant Sci 9:1–19

    Article  Google Scholar 

  • Aydin A, Kant C, Turan M (2012) Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res 7:1073–1086

    Google Scholar 

  • Babaeian M, Tavassoli A, Ghanbari A, Esmaeilian Y, Fahimifard M (2011) Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alstar cultivar) under water stress at three stages. Afr J Agric Res 6:1204–1208

    Google Scholar 

  • Balmer A, Pastor V, Glauser G, Mauch-Mani B (2018) Tricarboxylates induce defense priming against bacteria in Arabidopsis thaliana. Front Plant Sci 9:1–15

    Article  Google Scholar 

  • Baniasadi F, Saffari VR, Moud AAM (2018) Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Sci Hortic 234:312–317

    Article  CAS  Google Scholar 

  • Barsanti L, Coltelli P, Gualtieri P (2019) Paramylon treatment improves quality profile and drought resistance in Solanum lycopersicum L. cv. Micro-Tom. Agronomy 9:1–16

    Article  Google Scholar 

  • Bartucca ML, Celletti S, Astolfi S, Mimmo T, Cesco S, Panfili I, Del Buono D (2017a) Effect of three safeners on sulfur assimilation and iron deficiency response in barley (Hordeum vulgare) plants. Pest Manag Sci 73:240–245

    Article  CAS  PubMed  Google Scholar 

  • Bartucca ML, Celletti S, Mimmo T, Cesco S, Astolfi S, Del Buono D (2017b) Terbuthylazine interferes with iron nutrition in maize (Zea mays) plants. Acta Physiol Plant 39:1–8

    Article  CAS  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Nutrient transfer in plant-fungal symbioses. Trends Plant Sci 19:734–740

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:1–7

    Article  Google Scholar 

  • Boselli M, Bahouaoui MA, Lachhab N, Sanzani SM, Ferrara G, Ippolito A (2019) Protein hydrolysates effects on grapevine (Vitis vinifera L., cv. Corvina) performance and water stress tolerance. Sci Hortic 258:108784

    Article  CAS  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92:37–62

    CAS  Google Scholar 

  • Briglia N, Petrozza A, Hoeberichts FA, Verhoef N, Povero G (2019) Investigating the impact of biostimulants on the row crops corn and soybean using high-efficiency phenotyping and next generation sequencing. Agronomy 9:761

    Article  CAS  Google Scholar 

  • Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015) Biostimulants and crop responses: a review. Biol Agric Hortic 31:1–17

    Article  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Caradonia F, Battaglia V, Righi L, Pascali G, La Torre A (2019) Plant biostimulant regulatory framework: prospects in Europe and current situation at international level. J Plant Growth Regul 38:438–448

    Article  CAS  Google Scholar 

  • Carillo P, Colla G, El-Nakhel C, Bonini P, D’Amelia L, Dell’Aversana E, Pannico A, Giordano M, Sifola MI, Kyriacou MC, De Pascale S (2019) Biostimulant application with a tropical plant extract enhances Corchorus olitorius adaptation to sub-optimal nutrient regimens by improving physiological parameters. Agronomy 9:249

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    Article  PubMed  PubMed Central  Google Scholar 

  • Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171:1009–1023

    PubMed  PubMed Central  Google Scholar 

  • Çimrin KM, Türkmen Ö, Turan M, Tuncer B (2010) Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr J Biotechnol 9

  • Colla G, Rouphael Y, Rea E, Cardarelli M (2012) Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci Hortic 135:177–185

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M (2014) Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci 5:1–6

    Article  Google Scholar 

  • Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y (2015) Protein hydrolysates as biostimulants in horticulture. Sci Hortic 196:28–38

    Article  CAS  Google Scholar 

  • Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y (2017) Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front Plant Sci 8:2202

    Article  PubMed  PubMed Central  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Craigie JS, MacKinnon SL, Walter JA (2008) Liquid seaweed extracts identified using 1H NMR profiles. J Appl Phycol 20:665–671

    Article  Google Scholar 

  • Dalpé Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Manag 3:1–11

    Article  Google Scholar 

  • de Oliveira LF, Elbl P, Navarro BV, Macedo AF, Dos Santos AL, Floh EI, Cooke J (2017) Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development. Tree Physiol 37:116–130

    Article  PubMed  Google Scholar 

  • de Sousa Silva T, de Silva APS, de Almeida Santos A, Ribeiro KG, de Souza DC, Bueno PAA, Marques MMM, de Almeida PM, Peron AP (2020) Cytotoxicity, genotoxicity, and toxicity of plant biostimulants produced in brazil: subsidies for determining environmental risk to non-target species. Water Air Soil Pollut 231:1–8

    Google Scholar 

  • Del Buono D (2021) Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci Total Environ 751:141763

    Article  PubMed  Google Scholar 

  • Del Buono D, Ioli G, Nasini L, Proietti P (2011) A comparative study on the interference of two herbicides in wheat and Italian ryegrass and on their antioxidant activities and detoxification rates. J Agric Food Chem 59:12109–12115

    Article  PubMed  Google Scholar 

  • Del Buono D, Pannacci E, Bartucca ML, Nasini L, Proietti P, Tei F (2016) Use of two grasses for the phytoremediation of aqueous solutions polluted with terbuthylazine. Int J Phytoremediat 18:885–891

    Article  Google Scholar 

  • Desoky E-SM, ElSayed AI, Merwad A-RMA, Rady MM (2019) Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiol Biochem 142:292–302

    Article  CAS  PubMed  Google Scholar 

  • du Jardin P (2012) The science of plant biostimulants–a bibliographic analysis, Ad hoc study report. European Commission

  • Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  Google Scholar 

  • Dunstone RL, Richards RA, Rawson HM (1988) Variable responses of stomatal conductance, growth, and yield to fulvic acid applications to wheat. Aust J Agric Res 39:547–553

    Article  CAS  Google Scholar 

  • Elansary HO, Yessoufou K, Abdel-Hamid AM, El-Esawi MA, Ali HM, Elshikh MS (2017) Seaweed extracts enhance Salam turfgrass performance during prolonged irrigation intervals and saline shock. Front Plant Sci 8:830

    Article  PubMed  PubMed Central  Google Scholar 

  • Elansary HO, Mahmoud EA, El-Ansary DO, Mattar MA (2019) Effects of water stress and modern biostimulants on growth and quality characteristics of mint. Agronomy 10:6

    Article  Google Scholar 

  • Elkahoui S, Smaoui A, Zarrouk M, Ghrir R, Limam F (2004) Salt-induced lipid changes in Catharanthus roseus cultured cell suspensions. Phytochemistry 65:1911–1917

    Article  CAS  PubMed  Google Scholar 

  • El-Sheshtawy AA, Hager MA, Shawer SS (2019) Effect of bio-fertilizer, Phosphorus source and humic substances on yield, yield components and nutrients uptake by barley plant. J Biol Chem Environ Sci 14:279–300

    Google Scholar 

  • Elzaawely AA, Ahmed ME, Maswada HF, Xuan TD (2017) Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch Agron Soil Sci 63:687–699

    Article  CAS  Google Scholar 

  • Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Colla G, Rouphael Y (2018) Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front Plant Sci 9:743

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming TR, Fleming CC, Levy CC, Repiso C, Hennequart F, Nolasco JB, Liu F (2019) Biostimulants enhance growth and drought tolerance in Arabidopsis thaliana and exhibit chemical priming action. Ann Appl Biol 174:153–165

    Article  CAS  Google Scholar 

  • Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem J 474:877–883

    Article  CAS  PubMed  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Dayu NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gholami M, Fakhari AR, Ghanati F (2013) Selective regulation of nicotine and polyamines biosynthesis in tobacco cells by enantiomers of ornithine. Chirality 25:22–27

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Goni O, Fort A, Quille P, McKeown PC, Spillane C, O’Connell S (2016) Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: same seaweed but different. J Agric Food Chem 64:2980–2989

    Article  CAS  PubMed  Google Scholar 

  • Goñi O, Quille P, O’Connell S (2018) Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem 126:63–73

    Article  PubMed  Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: Sparks DL (ed) Advances in agronomy, vol 129, pp 141–174

  • Hamel C, Plenchette C (2007) Mycorrhizae in crop production. The Haworth Press Inc., New York

    Book  Google Scholar 

  • Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AAC, Fotopoulos V (2021) Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells 10:2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan N, Ebeed H, Aljaarany A (2020) Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol Mol Biol Plants 26:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazzouri KM, Khraiwesh B, Amiri KM, Pauli D, Blake T, Shahid M, Mullath SK, Nelson D, Mansour AL, Salehi-Ashtiani K, Purugganan M (2018) Mapping of HKT1; 5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci 9:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548

    Article  PubMed  PubMed Central  Google Scholar 

  • Howladar SM (2014) A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol Environ Saf 100:69–75

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Iovieno P, Punzo P, Guida G, Mistretta C, Van Oosten MJ, Nurcato R, Bostan H, Colantuono C, Costa A, Bagnaresi P, Chiusano ML, Albrizio R, Giorio P, Batelli G, Grillo S (2016) Transcriptomic changes drive physiological responses to progressive drought stress and rehydration in tomato. Front Plant Sci 7:371

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarošová J, Beoni E, Kundu JK (2016a) Barley yellow dwarf virus resistance in cereals: approaches, strategies and prospects. Field Crop Res 198:200–214

    Article  Google Scholar 

  • Jarošová M, Klejdus B, Kováčik J, Babula P, Hedbavny J (2016b) Humic acid protects barley against salinity. Acta Physiol Plant 38:1–9

    Article  Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jindo K, Martim SA, Navarro EC, Aguiar NO, Canellas LP (2012) Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 353:209–220

    Article  CAS  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419

    Article  CAS  Google Scholar 

  • Kaluzewicz A, Bosiacki M, Spizewski T (2018) Influence of biostimulants on the content of macro-and micronutrients in broccoli plants exposed to drought stress. J Elementol 23:287–297

    Google Scholar 

  • Kamiab F, Tavassolian I, Hosseinifarahi M (2020) Biologia futura: the role of polyamine in plant science. Biologia Futura 71:183–194

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Şenbayram M, Akram NA, Ashraf M, Alyemeni MN, Ahmad P (2020) Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Sci Rep 10:1–13

    Article  Google Scholar 

  • Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens CV, Van Breusegem F, Gechev T (2020) Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol Adv 40:107503

    Article  CAS  PubMed  Google Scholar 

  • Khadka K, Earl HJ, Raizada MN, Navabi A (2020) A physiomorphological trait-based approach for breeding drought tolerant wheat. Front Plant Sci 11:715

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Kıran S, Furtana GB, Talhouni M, Ellialtıoğlu ŞŞ (2019) Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia 78:490–497

    Article  Google Scholar 

  • Koleška I, Hasanagić D, Todorović V, Murtić S, Klokić I, Parađiković N, Kukavica B (2017) Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. J Plant Interact 12:209–218

    Article  Google Scholar 

  • Korkmaz A, Karagöl A, Horuz A (2016) The effects of humic acid added into the nutrient solution on yield and some fruit quality properties of tomato plant under the increasing NaCl stress conditions. Anadolu Tarım Bilimleri Dergisi 31:275–282

    Article  Google Scholar 

  • Krishnan S, Merewitz EB (2017) Polyamine application effects on gibberellic acid content in creeping bentgrass during drought stress. J Am Soc Hortic Sci 142:135–142

    Article  CAS  Google Scholar 

  • Kumar R, Trivedi K, Anand KG, Ghosh A (2020) Science behind biostimulant action of seaweed extract on growth and crop yield: Insights into transcriptional changes in roots of maize treated with Kappaphycus alvarezii seaweed extract under soil moisture stressed conditions. J Appl Phycol 32:599–613

    Article  CAS  Google Scholar 

  • Li Q, Ge H, Hu S (2008) Effects of exogenous putrescine and calciumon ion uptake of strawberry seedling under NaCI stress. J Plant Nutr 14:540–545

    CAS  Google Scholar 

  • Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Liu Y, Gu D, Wu W, Wen X, Liao Y (2013) The relationship between polyamines and hormones in the regulation of wheat grain filling. PLoS ONE 8:e78196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Loedolff B, van der Vyver C (2019) Water stress and redox regulation with emphasis on future biotechnological prospects. Redox Homeostasis in Plants. Springer, Cham, pp 155–177

    Chapter  Google Scholar 

  • Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G (2015) The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci Hortic 182:124–133

    Article  CAS  Google Scholar 

  • Luziatelli F, Ficca AG, Colla G, Baldassarre Švecová E, Ruzzi M (2019) Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front Plant Sci 10:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Martynenko A, Shotton K, Astatkie T, Petrash G, Fowler C, Neily W, Critchley AT (2016) Thermal imaging of soybean response to drought stress: the effect of Ascophyllum nodosum seaweed extract. Springerplus 5:1–14

    Article  CAS  Google Scholar 

  • Matuszak-Slamani R, Bejger R, Cieśla J, Bieganowski A, Koczańska M, Gawlik A, Kulpa D, Sienkiewicz M, Włodarczyk M, Gołębiowska D (2017) Influence of humic acid molecular fractions on growth and development of soybean seedlings under salt stress. Plant Growth Regul 83:465–477

    Article  CAS  Google Scholar 

  • Meng D, Hou L, Yang S, Meng JJ, Guo F, Li XG (2015) Exogenous polyamines alleviating salt stress on peanuts (Arachis hypogaea) grown in pots. Chin J Plant Ecol 39:1209–1215

    Article  Google Scholar 

  • Mimmo T, Bartucca ML, Del Buono D, Cesco S (2015) Italian ryegrass for the phytoremediation of solutions polluted with terbuthylazine. Chemosphere 119:31–36

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi H, Ghorbanpour M, Brestic M (2018) Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Ind Crops Prod 122:119–132

    Article  CAS  Google Scholar 

  • Mustafavi SH, Naghdi Badi H, Sękara A, Mehrafarin A, Janda T, Ghorbanpour M, Rafiee H (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40:1–19

    Article  CAS  Google Scholar 

  • Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika IN (2012) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3:1–11

    Article  Google Scholar 

  • Olivares FL, Aguiar NO, Rosa RCC, Canellas LP (2015) Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci Hortic 183:100–108

    Article  Google Scholar 

  • Pál M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci 237:16–23

    Article  PubMed  Google Scholar 

  • Parađiković N, Vinković T, Vinković Vrček I, Žuntar I, Bojić M, Medić-Šarić M (2011) Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants. J Sci Food Agric 91:2146–2152

    Article  PubMed  Google Scholar 

  • Paul K, Sorrentino M, Lucini L, Rouphael Y, Cardarelli M, Bonini P, Miras Moreno MB, Reynaud H, Canaguier R, Trtílek M, Panzarová K (2019) A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Front Plant Sci 10:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Bose J, Fuglsang AT, Shabala S (2014) Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots. J Exp Bot 65:2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Rady MM, Abd El-Mageed TA, Abdurrahman HA, Mahdi AH (2016) Humic acid application improves field performance of cotton (Gossypium barbadense L.) under saline conditions. J Anim Plant Sci 26:487–493

    CAS  Google Scholar 

  • Rady MM, Talaat NB, Abdelhamid MT, Shawky BT, Desoky ESM (2019) Maize (Zea mays L.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris L.) growth and physiology. J Hortic Sci Biotechnol 94:777–789

    Article  CAS  Google Scholar 

  • Rai AC, Singh M, Shah K (2012) Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol Biochem 61:108–114

    Article  Google Scholar 

  • Rathinapriya P, Pandian S, Rakkammal K, Balasangeetha M, Alexpandi R, Satish L, Rameshkumar R, Ramesh M (2020) The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop. Physiol Mol Biol Plants 26:1815–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman HU, Alharby HF, Bamagoos AA, Abdelhamid MT, Rady MM (2021) Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. Plant Physiol Biochem 158:43–52

    Article  CAS  PubMed  Google Scholar 

  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014) A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. In: Sparks DS (ed) Advances in agronomy, vol 124, pp 37–89

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Rouphael Y, Cardarelli M, Bonini P, Colla G (2017) Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front Plant Sci 8:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy P, Niyogi K, Sengupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10:277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saia S, Colla G, Raimondi G, Di Stasio E, Cardarelli M, Bonini P, Vitaglione P, De Pascale S, Rouphael Y (2019) An endophytic fungi-based biostimulant modulated lettuce yield, physiological and functional quality responses to both moderate and severe water limitation. Sci Hortic 256:108595

    Article  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Santaniello A, Scartazza A, Gresta F, Loreti E, Biasone A, Di Tommaso D, Piaggesi A, Perata P (2017) Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front Plant Sci 8:1362

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiber JN, Coats J, Duke SO, Gross AD (2014) Biopesticides: state of the art and future opportunities. J Agric Food Chem 62:11613–11619

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Guo MJ, Wang YG, Yuan XY, Wen YY, Song XE, Dong SQ, Guo PY (2020) Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signal Behav 15:1774212

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Shotton K, Norman E, Neily W, Critchley AT, Prithiviraj B (2018) Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 10:plx051

    Article  PubMed  Google Scholar 

  • Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56

    Article  CAS  Google Scholar 

  • Spann TM, Little HA (2011) Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’sweet orange nursery trees. HortScience 46:577–582

    Article  Google Scholar 

  • Stael S, Rocha AG, Robinson AJ, Kmiecik P, Vothknecht UC, Teige M (2011) Arabidopsis calcium-binding mitochondrial carrier proteins as potential facilitators of mitochondrial ATP-import and plastid SAM-import. FEBS Lett 585:3935–3940

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, Fotopoulos V, Molassiotis A (2014) Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ 37:864–885

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  PubMed  Google Scholar 

  • ur Rehman H, Alharby HF, Alzahrani Y, Rady MM (2018) Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil. Plant Physiol Biochem 126:97–105

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosse G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye P, Rigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 1–19, Article 356

  • Valero E, Macià H, De la Fuente IM, Hernández J-A, González-Sánchez M-I, García Carmona F (2016) Modeling the ascorbate-glutathione cycle in chloroplasts under light/dark conditions. BMC Syst Biol 10:1–20

    Google Scholar 

  • Variyar PS, Banerjee A, Akkarakaran JJ, Suprasanna P (2014) Chapter 12—role of glu cosinolates in plant stress tolerance. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, San Diego, pp 271–291

    Chapter  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  CAS  PubMed  Google Scholar 

  • Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, Moneti G, Pieraccini G, Di Serio C, Maserti B, Guerrieri E, Balestrini R (2018) The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. Front Plant Sci 9:1480

    Article  PubMed  PubMed Central  Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Formanek P (2011) Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil 342:31–48

    Article  CAS  Google Scholar 

  • Vuosku J, Suorsa M, Ruottinen M, Sutela S, Muilu-Mäkelä R, Julkunen-Tiitto R, Sarjala T, Neubauer P, Häggman H (2012) Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture. Tree Physiol 32:1274–1287

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yin X (2014) Alleviative effects of different kinds of exogenous polyamines on salt injury of soybean seedlings. J Henan Agric Sci 43:48–55

    CAS  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    Article  CAS  PubMed  Google Scholar 

  • Xu L (2015) The effect of polyamineon flower bud differentiation and bud germination of chrysanthemum. Shandong Agric Univ 2:31–36

    Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liang H, Lv X, Liu D, Wen X, Liao Y (2016) Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol Biochem 100:113–129

    Article  Google Scholar 

  • Yang W, Li P, Guo S, Fan B, Song R, Zhang J, Yu J (2017) Compensating effect of fulvic acid and super-absorbent polymer on leaf gas exchange and water use efficiency of maize under moderate water deficit conditions. Plant Growth Regul 83:351–360

    Article  CAS  Google Scholar 

  • Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709

    Article  CAS  PubMed  Google Scholar 

  • Zandonadi DB, Matos CRR, Castro RN, Spaccini R, Olivares FL, Canellas LP (2019) Alkamides: a new class of plant growth regulators linked to humic acid bioactivity. Chem Biol Technol Agric 6:1–12

    Article  Google Scholar 

  • Zeid IM, Shedeed ZA (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plant 50:635–640

    Article  CAS  Google Scholar 

  • Zhang L, Gao M, Zhang L, Li B, Han M, Alva AK, Ashraf M (2013) Role of exogenous glycinebetaine and humic acid in mitigating drought stress-induced adverse effects in Malus robusta seedlings. Turk J Bot 37:920–929

    Article  CAS  Google Scholar 

  • Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145:1061–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Wang L, Yang R, Han Y, Hao J, Liu C, Fan S (2019) Effects of exogenous putrescine on the ultrastructure of and calcium ion flow rate in lettuce leaf epidermal cells under drought stress. Hortic Environ Biotechnol 60:479–490

    Article  CAS  Google Scholar 

  • Zulfiqar I, Zahid NY, Qureshi AA, Hafiz IA (2019) Impact of biostimulants to improve the growth of local fennel (Foeniculum vulgare) under salinity stress. J Pure Appl Agric 4:38–50

    Google Scholar 

Download references

Acknowledgements

The author K. Rakkammal thanks the RUSA 2.0 scheme in the form of Ph.D. fellowship [Grant No. F. 24-51/2014-U, Policy (TN Multi-Gen), Department of Education, Government of India]. DST-FIST (Grant No. SR/FST/LSI-639/2015(C)), UGC-SAP (Grant No. F.5-1/2018/DRS-II(SAP-II)) and DST-PURSE (Grant No. SR/PURSE Phase 2/38 (G)) for providing instrumentation facilities.

Author information

Authors and Affiliations

Authors

Contributions

MR and KR conceived and designed the review. KR and TMR  wrote the manuscript. MR and SAC made a critical revision of the review. KR and TMR performed the literature search. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Manikandan Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by I. Karsai.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakkammal, K., Maharajan, T., Ceasar, S.A. et al. Biostimulants and their role in improving plant growth under drought and salinity. CEREAL RESEARCH COMMUNICATIONS 51, 61–74 (2023). https://doi.org/10.1007/s42976-022-00299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00299-6

Keywords

Navigation