Skip to main content
Log in

Salicylic acid: a key signal molecule ameliorating plant stresses

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is a natural potent signaling molecule, synthesized from the amino acid phenylalanine or chorismate, involved in induction of plant defense strategies associated with stress conditions. The significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant metabolic processes such as photosynthesis, metabolite accumulation, redox homeostasis and gene regulation. Nonetheless, extensive genomic and proteomic studies are expected to broadly reveal SA-responsive pathways regulating genes and proteins upon stresses. Based on recent observations, the review focuses on metabolism of SA and interaction with major signaling molecules and phytohormones, thus unraveling the mechanism of SA mediated abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbaspour J, Ehsanpour AA (2020) Sequential expression of key genes in proline, glycine betaine and artemisinin biosynthesis of Artemisia aucheri Boiss using salicylic acid under in vitro osmotic stress. Biologia 75:1251–1263

    Article  CAS  Google Scholar 

  • Agarwal S, Sairam RK, Srivastava GC, Meena RC (2005) Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant 49:541–550

    Article  CAS  Google Scholar 

  • Ahmad R, Hussain S, Anjum MA, Khalid MF, Saqib M, Zakir I, Hassan A, Fahad S, Ahmad S (2019) Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In: Plant abiotic stress tolerance. Springer, 191–205

  • Aldesuquy HS, Samy A, Abbas MA, Elhakem AH (2012) Role of glycine betaine and salicylic acid in improving growth vigour and physiological aspects of droughted wheat cultivars. J Stress Physiol Biochem 8:149–171

    Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12:607–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, Rawat S, Grover A (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 212:29–37

    Article  PubMed  Google Scholar 

  • Altúzar-Molina AR, Muñoz-Sánchez JA, Vázquez-Flota F, Monforte-González M, Racagni-Di Palma G, Hernández-Sotomayor SMT (2011) Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiol Biochem 49:151–158

    Article  PubMed  Google Scholar 

  • Al-Whaibi MH, Siddiqui MH, Basalah MO (2012) Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma 249:769–778

    Article  CAS  PubMed  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integ Plant Biol 53:412–428

    Article  CAS  Google Scholar 

  • Arora D, Jain P, Singh N, Kaur H, Bhatla SC (2016) Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 50:291–303

    Article  CAS  PubMed  Google Scholar 

  • Awate PD, Gaikwad DK (2014) Influence of growth regulators on secondary metabolites of medicinally important oil yielding plant Simarouba glauca DC. under water stress conditions. J Stress Physiol Biochem 10:222–229

    Google Scholar 

  • Backer R, Naidoo S, Van den Berg N (2019) The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. Frontiers Plant Sci 10:102

    Article  Google Scholar 

  • Bali S, Gautam V, Kaur P, Khanna K, Kaur R, Vig AP, Ohri P, Bhardwaj R (2017) Interaction of salicylic acid with plant hormones in plants under abiotic stress. In: Nazar R, Iqbal N, Khan N (eds) Salicylic acid: a multifaceted hormone. Springer, Singapore

    Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Interactions of brassinosteroids with major phytohormones: antagonistic effects. J Plant Growth Regul 37:1025–1032

    Article  CAS  Google Scholar 

  • Caarls L, Van der Does D, Hickman R, Jansen W, Verk MC, Proietti S (2017a) Assessing the role of ETHYLENE RESPONSE FACTOR transcriptional repressors in salicylic acid-mediated suppression of jasmonic acid-responsive genes. Plant Cell Physiol 58:266–278

    CAS  PubMed  Google Scholar 

  • Caarls L, Van der DD, Hickman R, Jansen W, Verk MC, Proietti S, Lorenzo O, Solano R, Pieterse CM, Van Wees SC (2017b) Assessing the role of ETHYLENE RESPONSE FACTOR transcriptional repressors in salicylic acid-mediated suppression of jasmonic acid-responsive genes. Plant Cell Physiol 58(2):266–278

    CAS  PubMed  Google Scholar 

  • Chakraborty U, Tongden C (2005) Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci 89:384–389

    CAS  Google Scholar 

  • Chaouch S, Queval G, Vanderauwera S, Mhamdi A, Vandorpe M, Langlois-Meurinne M (2010) Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiol 153:1692–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signaling Behavior 4(6):493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S (2014) Glutathione transferase supergene family in tomato: salt stressregulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  PubMed  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic Acid biosynthesis and metabolism. The arabidopsis book 9:e0156

  • Di X, Gomila J, Takken FL (2017) Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Mol Plant Pathol 18:1024–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil-Maurizi C, Poinssot B (2012) Role of glutathione in plant signaling under biotic stress. Plant Signal Behav 7:210–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreuil-Maurizi C, Vitecek J, Marty L, Branciard L, Frettinger P, Wendehenne D, Meyer AJ, Mauch F, Poinssot B (2011) Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and the hypersensitive response. Plant Physiol 157:2000–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid A, Ali HM, Elshikh MS (2017) Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions. Front Physiol 8:716

    Article  PubMed  PubMed Central  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(2–18):10

    Google Scholar 

  • Francisco JC, Montilla-Bascón G, Nicolas R, Elena P (2019) Salicylic acid regulates polyamine biosynthesis during drought responses in oat. Plant Signal Behav 14(10):e1651183

    Article  Google Scholar 

  • Gayatri G, Agurla S, Raghavendra AS (2013) Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front Plant Sci 4:1–11

    Article  Google Scholar 

  • Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxidants Redox Signal 18(16):2106–2121

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23:249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassannejad S, Bernard F, Mirzajani F, Gholami M (2011) SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes. Plant Physiol Biochem 51:40–46

    Article  PubMed  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Experiment Bot 66(10):2901–2911

    Article  Google Scholar 

  • Herrera-Vásquez A, Salinas P, Holuigue L (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci 6:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 51:480–487

    Article  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Khan MB, Akram M, Saleem MF (2009) Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. J Agron Crop Sci 195:98–109

    Article  CAS  Google Scholar 

  • Idrees M, Naeem M, Aftab T, Khan M (2013) Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.). J Haz Mat 252:367–374

    Article  Google Scholar 

  • Janda K, Hideg É, Szalai G (2012) Salicylic acid may indirectly influence the photosynthetic electron transport. J Plant Physiol 169:971–978

    Article  CAS  PubMed  Google Scholar 

  • Janda T, Gondor OK, Yordanova R (2014) Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant 36:2537–2546

    Article  CAS  Google Scholar 

  • Kalachova T, Janda M, Šašek V (2020) Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Ann Bot 125(5):775–784

    Article  CAS  PubMed  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36:2287–2297

    Article  CAS  Google Scholar 

  • Khan MI, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol. Biochem 80:67–74

    CAS  Google Scholar 

  • Khan MI, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Article  PubMed  PubMed Central  Google Scholar 

  • Khokon AR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y et al (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    Article  CAS  PubMed  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Kumar V, Kaur P, Bhardwaj R (2017) Synergistic effect of 24-epibrassinolide and salicylic acid on photosynthetic efficiency and gene expression in Brassica juncea L. under Pb stress. Turk J Biol 41(6):943–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U (2018) Advances and current challenges in calcium signaling. New Phytol 218:414–431

    Article  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefevere H, Bauters L, Gheysen G (2020) Salicylic acid biosynthesis in plants. Front Plant Sci 11:338

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei T, Feng H, Sun X, Dai QL, Zhang F, Liang HG, Lin HH (2010) The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul 60:35–42

    Article  CAS  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529:321–325

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Yu J, Peng Y, Huang B (2016) Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiol Plant 159:42–58

    Article  PubMed  Google Scholar 

  • Liu HT, Huang W-D, Pan Q-H, Zhan W-H, Liu J-C, Wan Y, Liu S-B, Y-Y, (2006) Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. J Plant Physiol 163:405–416

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY (2009) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728

    Article  CAS  PubMed  Google Scholar 

  • Macaulay KM, Heath GA, Ciulli A, Murphy AM, Abell C, Carr JP, Smith AG (2017) The biochemical properties of the two Arabidopsis thaliana isochorismate synthases. The Biochemical J 474(10):1579–1590

    Article  CAS  Google Scholar 

  • Manohar M, Choi HW, Manosalva PM, Austin C, Peters J, Klessig DF (2017) Plant and human MORC proteins have DNA modifying activities similar to type II topoisomerases, but require additional factor(s) for full activity. Molecular Plant-Microbe Inter 30:87–100

    Article  CAS  Google Scholar 

  • Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K (2012) H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287:11717–11729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McSteen P, Zhao Y (2008) Plant Hormones and Signaling: Common Themes and New Developments. Dev Cell 14(4):467–473

    Article  CAS  PubMed  Google Scholar 

  • Meguro A, Sato Y (2014) Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice. Sci Rep 4:4555

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra N, Misra R (2012) Salicylic acid changes plant growth parameters and proline metabolism in Rauwolfia serpentina leaves grown under salinity stress. Am Eurasian J Agri Environ Sci 12:1601–1609

    CAS  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10:e1003751

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie L, Wang R, Xia Y (2015) CDPK1, an Arabidopsis thaliana calcium-dependent protein kinase, is involved in plant defense response. Russ J Plant Physiol 62:866–874

    Article  CAS  Google Scholar 

  • Noctor G, Lelarge-Trouverie C, Mhamdi A (2014) The metabolomics of oxidative stress. Phytochem 112:33–53

    Article  Google Scholar 

  • Noshi M, Maruta T, Shigeoka S (2012) Relationship between chloroplastic H2O2 and the salicylic acid response. Plant Signal Behav 7:944–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in Plant Sci 18(8):459–467

    Article  CAS  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim S-Y, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Groot EP, Kazantsev F, Teale W, Omelyanchuk N, Kovrizhnykh V, Mironova VV (2019) Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol 180:1725–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokotylo I, Kravets V, Ruelland E (2019) Salicylic acid binding proteins (SABPs): the hidden forefront of salicylic acid signalling. Int J Mol Sci 20(18):4377

    Article  CAS  PubMed Central  Google Scholar 

  • Pospisilova J, Haisel D, Vankova R (2011) Responses of transgenic tobacco plants with increased proline content to drought and/or heat stress. Amer J Plant Sci 2:318–324

    Article  CAS  Google Scholar 

  • Prodhan MY, Munemasa S, Nahar MN, Nakamura Y, Murata Y (2018) Guard Cell Salicylic Acid Signaling Is Integrated into Abscisic Acid Signaling via the Ca2+/CPK-Dependent Pathway. Plant Physiol 178(1):441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu C, Ji W, Guo Y (2011) Effects of high temperature and strong light on chlorophyll fluorescence, the D1 protein, and Deg1 protease in Satsuma mandarin and the protective role of salicylic acid. Acta Ecol Sin 31:3802–3810

    CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32:22–30

    Article  CAS  Google Scholar 

  • Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I (2019) Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Sci 365:498–502

    Article  CAS  Google Scholar 

  • Rodas-Junco BA, Nic-Can GI, Muñoz-Sánchez A, Hernández-Sotomayor SMT (2020) Phospholipid signaling is a component of the salicylic acid response in plant cell suspension cultures. Int J Mol Sci 21:5285

    Article  CAS  PubMed Central  Google Scholar 

  • Romero-Romero JL, Inostroza-Blancheteau C, Reyes-Díaz M, Matte JP, Aquea F, Espinoza C, Gil PM, Arce-Johnson P (2020) Increased drought and salinity tolerance in Citrus aurantifolia (Mexican Lemon) plants overexpressing Arabidopsis CBF3 gene jesús L. J Soil Sci Plant Nutr 20(8):244–252

    Article  CAS  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biol 5(5):301–307

    Article  CAS  Google Scholar 

  • Seyfferth C, Tsuda K (2014) Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front Plant Sci 5:1–10

    Article  Google Scholar 

  • Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214

    Article  CAS  PubMed  Google Scholar 

  • Snyman M, Cronjé MJ (2008) Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J Exp Bot 59:2125–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalai G, Janda K, Darkó E, Janda T, Peeva V, Pál M (2017) Comparative analysis of polyamine metabolism in wheat and maize plants. Plant Physiol Biochem 112:239–250

    Article  CAS  PubMed  Google Scholar 

  • Tomonori K, Takuya H, Francois B (2013) Signaling role of salicylic acid in abiotic stress responses in plants. In: Hayat S, Aqil A, Nasir AM (eds) Salicylic acid. Springer, Dordrecht, pp 249–276

    Google Scholar 

  • Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A (2019) PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol Plant 12:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53:763–775

    Article  CAS  PubMed  Google Scholar 

  • Wan D, Li R, Zou B, Zhang X, Cong J, Wang R (2012) Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31:1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Sci 308:1036–1040

    Article  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Hendrickson CA, Dong X (2007a) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biol 17:1784–1790

    Article  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007b) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Gu L, Ye S (2017) Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla). BMC Genomics 18:870

    Article  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Shahzad R, Hamayun M, Asaf S, Khan AL, Kang SM, Yun S, Kim KM, Lee IJ (2018) Biochar amendment changes jasmonic acid levels in two rice varieties and alters their resistance to herbivory. PLoS ONE 13:e0191296

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen PF, Chen JY, Wan SB, Kong WF, Zhang P, Wang W (2008) Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regul 55:1–10

    Article  CAS  Google Scholar 

  • Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM (2012) Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336:1708–1711

    Article  CAS  PubMed  Google Scholar 

  • Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM (2016) Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proc Natl Acad Sci USA 113:13917–13922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Dunaway-Mariano D, Mariano PS (2013) Design, synthesis, and evaluation of inhibitors of pyruvate phosphate dikinase. J Org Chem 78(5):1910–1922

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64:293–303

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Huang W (2017) Calcium-dependent protein kinases in phytohormone signaling pathways. Int J Mol Sci 18(11):2436

    Article  PubMed Central  Google Scholar 

  • Xu F, Cheng H, Cai R, Li LL, Chang J, Zhu J, Zhang FX, Chen LJ, Wang Y, Cheng SH, Cheng SY (2008) Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Mol Cells 26:536–547

    CAS  PubMed  Google Scholar 

  • Xu LL, Faz YN, Dong YJ, Kong J, Bai XY (2015) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biol Plant 59(1):171–182

    Article  CAS  Google Scholar 

  • Yokoo S, Inoue S, Suzuki N, Amakawa N, Matsui H, Nakagami H (2018) Comparative analysis of plant isochorismate synthases reveals structural mechanisms underlying their distinct biochemical properties. Biosci Rep 38:BSR20171457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu ZZ, Fu CX, Han YS, Li XY, Zhao DX (2006) Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnol Lett 28:1027–1031

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Skelly MJ, Yin M, Yu M, Mun BG, Lee SU (2016) Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol 211:516–526

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li X (2019) Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol 50:29–36

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145(2):450–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Du L, Shen C, Yang Y, Poovaiah BW (2014) Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+-calmodulin-AtSR1/CAMTA3 signaling. Plant J 78:269–281

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Guo Y, Novák O, Chen W, Ljung K, Noel JP, Chory J (2016) Local auxin metabolism regulates environmentinduced hypocotyl elongation. Nat. Plants 2:16025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10:1021–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Tak, Y. & Asthir, B. Salicylic acid: a key signal molecule ameliorating plant stresses. CEREAL RESEARCH COMMUNICATIONS 50, 617–626 (2022). https://doi.org/10.1007/s42976-021-00236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-021-00236-z

Keywords

Navigation