An SNP based GWAS analysis of seed longevity in wheat

Abstract

Worldwide, ex situ genebanks are given the task to store seeds to prevent the danger of extinction of plant genetic resources. A regular monitoring of their germination capacity is central to any genebank and any drop in that beyond a certain threshold determines their regeneration cycle. Seed longevity varies among different species and is a quantitative trait. New molecular marker data covering hitherto empty genomic regions may provide new insights into the inheritance of this trait. Using genetic information of SNPs in two wheat panels, a total of 72 marker trait associations were discovered which could be confined to 24 quantitative trait loci (QTLs) based on marker proximity to each other. Among them, 13 QTLs are potentially novel. We also determined that with the pyramiding of favorable alleles, an increase of 12.8% in seed longevity could be achieved.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

References

  1. Almoguera C, Prieto-Dapena P, Díaz-Martín J, Espinosa JM, Carranco R, Jordano J (2009) The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biol 9(1):75

    PubMed  PubMed Central  Google Scholar 

  2. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814

    CAS  PubMed  Google Scholar 

  3. Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Nat Acad Sci 103:17042–17047

    CAS  PubMed  Google Scholar 

  4. Börner A, Khlestkina EK, Chebotar S, Nagel M, Rehman Arif MA, Kobiljski B, Lohwasser, Röder MS (2014) Molecular markers in management of ex situ PGR—a case study. J Biosci 37:871–877

    Google Scholar 

  5. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  6. Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SPC, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg and Shakdara, using a new recombinant inbred line population. Plant Physiol 135(1):432–443

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Coolbear P (1995) Mechanisms of seed deterioration. In: Basra AS (ed) Seed quality: basic mechanisms and agricultural implications. Food Product Press, New York, pp 223–277

    Google Scholar 

  8. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    CAS  PubMed  Google Scholar 

  9. Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122(2):403–414

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Devaiah SP, Pan X, Hong Y, Roth M, Welti R, Wang X (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50:950–957

    CAS  PubMed  Google Scholar 

  11. Earl DA (2012) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet 4:359–361

    Google Scholar 

  12. FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, p 399

    Google Scholar 

  13. Kotak S, Larkindale J, Lee U, Koskull-Döring PV, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    CAS  PubMed  Google Scholar 

  14. Landjeva S, Lohwasser U, Börner A (2010) Genetic mapping within the wheat D genome reveals QTLs for germination, seed vigour and longevity, and early seedling growth. Euphytica 171:129–143

    Google Scholar 

  15. Lin R, Wang H (2004) Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol 136:4010–4022

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Linington SH, Pritchard HW (2001) Genebanks. In: Levin SA (ed) Encyclopedia of biodiversity, vol 3. Academic Press, San Diego, pp 164–181

    Google Scholar 

  17. Liu YN, Zhang HW, Li XH, Wang F, Lyle D, Sun L, Wang G, Wang J, Li L, Gu R (2019) Quantitative trait locus mapping for seed artificial aging traits using an F2:3 population and a recombinant inbred line population crossed from two highly related maize inbreds. Plant Breed 138:29–37

    Google Scholar 

  18. Ma L, Li G (2018) FAR1-Related Sequence (FRS) and FRS Related Factor (FRF) proteins in Arabidopsis growth and development. Front Plant Sci 9:692

    PubMed  PubMed Central  Google Scholar 

  19. McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  20. Miura K, Lyn SY, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104:981–986

    CAS  PubMed  Google Scholar 

  21. Nagel M, Vogel H, Landjeva S, Buck-Sorlin G, Lohwasser U, Scholz U, Börner A (2009) Seed conservation in ex situ genebanks—genetic studies on longevity in barley. Euphytica 170:5–14

    CAS  Google Scholar 

  22. Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27(1):37–58

    Google Scholar 

  23. Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin J-P, Job D, Jullien M, Grappin P (2008) Protein repair l-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell 20(11):3022–3037

    PubMed  PubMed Central  Google Scholar 

  24. Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142:1102–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotypic data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148(1):620–641

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rao NK, Roberts EH, Ellis RH (1987) Loss of viability in lettuce seeds and the accumulation of chromosome damage under different storage conditions. Ann Bot 60:85–96

    Google Scholar 

  28. Rehman Arif MA, Börner A (2019) Mapping of QTL associated with seed longevity in durum wheat (Triticum durum Desf.). J Appl Genet 60:33–36

    Google Scholar 

  29. Rehman Arif MA, Nagel M, Neumann K, Kobiljski B, Lohwasser U, Börner A (2012a) Genetic studies of seed longevity in hexaploid wheat exploiting segregation and association mapping approaches. Euphytica 186:1–13

    Google Scholar 

  30. Rehman Arif MA, Neumann K, Nagel M, Kobiljski B, Lohwasser U, Börner A (2012b) An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica 188:409–417

    CAS  Google Scholar 

  31. Rehman Arif MA, Nagel M, Lohwasser U, Börner A (2017) Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.). J Biosci 42:81–89

    Google Scholar 

  32. Revilla P, Butrón A, Rodríguez VM, Malvar RA, Ordás A (2009) Identification of genes related to germination in aged maize seed by screening natural variability. J Exp Bot 60:4151–4157

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sano N, Rajjou L, North HM, Debeaujon I, Marion-Poll A, Seo M (2016) Staying alive: molecular aspects of seed longevity. Plant Cell Physiol 57:660–674

    CAS  PubMed  Google Scholar 

  34. Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16(6):1419–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh RK, Raipuria RK, Bhatia VS, Rani A, Pushpendra Husain SM, Chauhan D, Chauhan GS, Mohopatra T (2008) SSR markers associated with seed longevity in soybean. Seed Sci Technol 36:162–167

    Google Scholar 

  36. Wang Z, Cao H, Sun YZ, Li XY, Chen FY, Carles A, Li Y, Ding M, Zhang C, Deng X, Soppe WJ (2013) Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid- ethylene antagonism mediated by histone deacetylation. Plant Cell 25:149–166

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang SC, Wong D, Forrest K, Allen A, Chao SM, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM (2014) Characterization of polyploid wheat genomic diversity using a high density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:87–96

    CAS  Google Scholar 

  38. Wiebach J, Nagel M, Börner A, Altmann T, Riewe D (2020) Age-dependent loss of seed viability with increased lipid peroxidation and hydrolysis. Plant Cell Environ 43:303–334

    CAS  PubMed  Google Scholar 

  39. Xu Q, Belcastro MP, Villa ST, Dinkins RD, Clarke SG, Downie AB (2004) A Second protein l-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. Plant Physiol 136(1):2652–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS et al (2006) A unified mixed-model for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  PubMed  Google Scholar 

  41. Zuo J, Liu J, Gao F, Yin G, Wang Z, Chen F, Li X, Xu J, Chen T, Li L, Li Y (2018) Genome-wide linkage mapping reveals qtls for seed vigor-related traits under artificial aging in common wheat (Triticum aestivum). Front Plant Sci 9:1101

    PubMed  PubMed Central  Google Scholar 

  42. Zuo JH, Chen FY, Li XY, Xia XC, Cao H, Liu JD, Liu YX (2019) Genome-wide association study reveals loci associated with seed longevity in common wheat (Triticum aestivum L.). Plant Breed. https://doi.org/10.1111/pbr.12784

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

MARA and AB conceived the idea. MARA performed the analysis and wrote the manuscript. AB reviewed the manuscript.

Corresponding author

Correspondence to Mian Abdur Rehman Arif.

Ethics declarations

Conflict of interest

Both authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 31 kb)

Supplementary material 2 (PPTX 801 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rehman Arif, M.A., Börner, A. An SNP based GWAS analysis of seed longevity in wheat. CEREAL RESEARCH COMMUNICATIONS 48, 149–156 (2020). https://doi.org/10.1007/s42976-020-00025-0

Download citation

Keywords

  • Seed longevity
  • Wheat
  • GWAS
  • SNP