Skip to main content
Log in

The distribution of invasive alien plant species in peri-urban areas: a case study from the city of Kolkata

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Urbanization results in rapid land transformations impacting bio-diversity and ecosystem services. With urban expansions population transition will predominantly occur in the peri-urban areas of the world’s metropolitan cities like India, China, and Nigeria, which are often located in naturally species-rich regions and highly vulnerable to plant invasions. Thus it is increasingly important to monitor the changes occurring in the floral composition in such areas. The present study was therefore conducted across peri-urban habitats of Greater Kolkata, in order to establish a baseline data on plant species richness, invasive species co-occurrence, invader dominance and understand the bio-diversity pattern. Results showed a total of 62 plant species, mostly annual herbs, belonging to 29 families constituting the species richness in the study area. Both native (53%) and alien (47%) species were almost equally distributed and invasive species (32%) represented the majority among alien species. The findings also indicate that the species pool was dominated by sparsely distributed species. The number of invasive species varied from 2 to 9 per site, with 80% of sites supporting 3 or more species. Alternanthera philoxeroides and Mikania micrantha were the most frequently occurring invasive species. Overall, M. micrantha appeared to be the dominant species with 62% of sites with a high cover (> 70%) and was found to be evenly distributed in areas. However, they pose serious threat to local bio-diversity which shows that species-specific management is needed even in the peri-urban habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari, D., Tiwary, R., & Barik, S. K. (2015). Modelling hotspots for invasive alien plants in India. PLoS ONE, 10(7), e0134665.

    PubMed  PubMed Central  Google Scholar 

  • Agrawal, S., & Narayan, R. (2017). Spatio-temporal organization and biomass dynamics of plant communities in a dry tropical peri-urban region: deterministic role of alien flora in anthropo-ecosystems. Current Science, 113, 53–62.

    Google Scholar 

  • Aijaz, R. (2019). India’s peri-urban regions: The need for policy and the challenges of Governance. Observer Research Foundation, pp. 12

  • Allen, W. J., Wainer, R., Tylianakis, J. M., Barratt, B. I., Shadbolt, M. R., Waller, L. P., & Dickie, I. A. (2020). Community-level direct and indirect impacts of an invasive plant favour exotic over native species. Journal of Ecology, 108(6), 2499–2510.

    Google Scholar 

  • Alue, B. A., Salleh Hudin, N., Mohamed, F., Mat Said, Z., & Ismail, K. (2022). Plant diversity along an urbanization gradient of a tropical city. Diversity, 14(12), 1024.

    Google Scholar 

  • Appalasamy, M., & Ramdhani, S. (2020). Aliens in the city: Towards identifying non-indigenous floristic hotspots within an urban matrix. Flora, 269, 151631.

    Google Scholar 

  • Arnold, J. F. (1955). Plant life-form classification and its use in evaluating range conditions and trend. Rangeland Ecology & Management/journal of Range Management Archives, 8(4), 176–181.

    Google Scholar 

  • Aronson, M. F., Handel, S. N., La Puma, I. P., & Clemants, S. E. (2015). Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosystems, 18, 31–45.

    Google Scholar 

  • Aronson, M. F., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B., MacIvor, J. S., Nilon, C. H., & Vargo, T. (2017). Biodiversity in the city: Key challenges for urban green space management. Frontiers in Ecology and the Environment, 15(4), 189–196.

    Google Scholar 

  • Avolio, M., Pataki, D. E., Jenerette, G. D., Pincetl, S., Clarke, L. W., Cavender-Bares, J., Gillespie, T. W., Hobbie, S. E., Larson, K. L., McCarthy, H. R., & Trammell, T. L. (2020). Urban plant diversity in Los Angeles, California: Species and functional type turnover in cultivated landscapes. Plants, People, Planet, 2(2), 144–156.

    Google Scholar 

  • Banerjee, A. K., & Dewanji, A. (2017a). Role of intraspecific trait plasticity in Mikania micrantha Kunth growth and impact of its abundance on community composition. Journal of Asia-Pacific Biodiversity, 10(2), 237–249.

    Google Scholar 

  • Banerjee, A. K., & Dewanji, A. (2017b). Native exotic relationships in plant communities: The role of exotic dominance in framing community composition. Ecological Research, 32(5), 653–665.

    Google Scholar 

  • Banerjee, A. K., Ghosh, S., & Dewanji, A. (2017a). Do plants have a choice of traits to be modulated? Evidence from an invasive plant Mikania micrantha Kunth in different urban environments. American Journal of Plant Sciences, 8(4), 835–855.

    CAS  Google Scholar 

  • Banerjee, A. K., Medda, C., Bhattacharya, S., & Dewanji, A. (2018). What matters most-role of environment, arrival order and population fitness in invaded community assembly. Acta Oecologica, 93, 56–64.

    Google Scholar 

  • Banerjee, A. K., Mukherjee, A., & Dewanji, A. (2017b). Potential distribution of Mikania micrantha Kunth in India—evidence of climatic niche and biome shifts. Flora, 234, 215–223.

    Google Scholar 

  • Bang, A., Cuthbert, R. N., Haubrock, P. J., Fernandez, R. D., Moodley, D., Diagne, C., Turbelin, A. J., Renault, D., Dalu, T., & Courchamp, F. (2022). Massive economic costs of biological invasions despite widespread knowledge gaps: A dual setback for India. Biological Invasions, 24(7), 2017–2039.

    Google Scholar 

  • Bassett, I., Paynter, Q., Hankin, R., & Beggs, J. R. (2012). Characterising alligator weed (Alternanthera philoxeroides; Amaranthaceae) invasion at a northern New Zealand lake. New Zealand Journal of Ecology, 36, 216–222.

    Google Scholar 

  • Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R., & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26(7), 333–339.

    Google Scholar 

  • Calfapietra, C., Peñuelas, J., & Niinemets, Ü. (2015). Urban plant physiology: Adaptation-mitigation strategies under permanent stress. Trends in Plant Science, 20(2), 72–75.

    CAS  PubMed  Google Scholar 

  • Chakraborty, S., Maity, I., Patel, P. P., Dadashpoor, H., Pramanik, S., Follmann, A., Novotný, J., & Roy, U. (2021). Spatio-temporal patterns of urbanization in the Kolkata Urban Agglomeration: A dynamic spatial territory-based approach. Sustainable Cities and Society, 67, 102715.

    Google Scholar 

  • Chatterjee, A., & Dewanji, A. (2014). Effect of varying Alternanthera philoxeroides (alligator weed) cover on the macrophyte species diversity of pond ecosystems: A quadrat-based study. Aquatic Invasions, 9(3), 343–355.

    Google Scholar 

  • Chen, T. L., Chiu, H. W., & Lin, Y. F. (2020). How do east and southeast Asian cities differ from western cities? A systematic review of the urban form characteristics. Sustainability, 12(6), 2423.

    CAS  Google Scholar 

  • Chen, W., Wang, G., & Zeng, J. (2023). Impact of urbanization on ecosystem health in Chinese urban agglomerations. Environmental Impact Assessment Review, 98, 106964.

    Google Scholar 

  • Dadashpoor, H., & Ahani, S. (2021). Explaining objective forces, driving forces, and causal mechanisms affecting the formation and expansion of the peri-urban areas: A critical realism approach. Land Use Policy, 102, 105232.

    Google Scholar 

  • Dasgupta, S., Gosain, A. K., Rao, S., Roy, S., & Sarraf, M. (2013). A megacity in a changing climate: The case of Kolkata. Climatic Change, 116(3), 747–766.

    Google Scholar 

  • de Barros Ruas, R., Costa, L. M. S., & Bered, F. (2022). Urbanization driving changes in plant species and communities—A global view. Global Ecology and Conservation, 38, e02243.

    Google Scholar 

  • Del Tredici, P. (2010). Spontaneous urban vegetation: Reflections of change in a globalized world. Nature and Culture, 5(3), 299–315.

    Google Scholar 

  • Diserud, O. H., & Ødegaard, F. (2007). A multiple-site similarity measure. Biology Letters, 3(1), 20–22.

    PubMed  Google Scholar 

  • Early, R., Bradley, B. A., Dukes, J. S., Lawler, J. J., Olden, J. D., Blumenthal, D. M., Gonzalez, P., Grosholz, E. D., Ibañez, I., Miller, L. P., Sorte, C. J., & Tatem, A. J. (2016). Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 7(1), 1–9.

    Google Scholar 

  • Ellis, E. C. (2021). Land use and ecological change: A 12,000-year history. Annual Review of Environment and Resources, 46, 1–33.

    Google Scholar 

  • English, J., & Wright, A. J. (2021). The effect of urban temperature gradients on grassland microclimate amelioration in Los Angeles, USA. Applied Vegetation Science, 24(1), e12556.

    Google Scholar 

  • ENVIS Centre on Floral Diversity (http://bsienvis.nic.in/Database/Invasive_Alien_species_15896.aspx)

  • Escobedo, V. M., Rios, R. S., Salgado-Luarte, C., Stotz, G. C., & Gianoli, E. (2017). Disturbance by an endemic rodent in an arid shrubland is a habitat filter: Effects on plant invasion and taxonomical, functional and phylogenetic community structure. Annals of Botany, 119(4), 659–670.

    PubMed  PubMed Central  Google Scholar 

  • Fahey, C., & Flory, S. L. (2022). Soil microbes alter competition between native and invasive plants. Journal of Ecology, 110(2), 404–414.

    Google Scholar 

  • Ferreira, C., Kalantari, Z., & Pereira, P. (2021). Liveable cities: Current environmental challenges and paths to urban sustainability. Journal of Environmental Management, 277, 111458.

    PubMed  Google Scholar 

  • Follmann, A. (2022). Geographies of peri-urbanization in the global south. Geography Compass, 16(7), e12650.

    Google Scholar 

  • Gao, J., & O’Neill, B. C. (2020). Mapping global urban land for the 21st century with data-driven simulations and shared socioeconomic pathways. Nature Communications, 11(1), 2302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopal, D., von der Lippe, M., & Kowarik, I. (2019). Sacred sites, biodiversity and urbanization in an Indian megacity. Urban Ecosystems, 22(1), 161–172.

    Google Scholar 

  • Guan, X., Shen, H., Li, X., Gan, W., & Zhang, L. (2019). A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Science of the Total Environment, 669, 342–352.

    CAS  PubMed  Google Scholar 

  • Gupta, S., & Narayan, R. (2006). Species diversity in four contrasting sites in a peri-urban area in Indian dry tropics. Tropical Ecology, 47(2), 229–242.

    Google Scholar 

  • Holl, K. D., Luong, J. C., & Brancalion, P. H. (2022). Overcoming biotic homogenization in ecological restoration. Trends in Ecology & Evolution. https://doi.org/10.1016/j.tree.2022.05.002

    Article  Google Scholar 

  • Huang, Q., Shen, Y., Li, X., Zhang, G., Huang, D., & Fan, Z. (2015). Regeneration capacity of the small clonal fragments of the invasive Mikania micrantha H.B.K.: Effects of the stolon thickness, internode length and presence of leaves. Weed Biology and Management, 15(2), 70–77.

    Google Scholar 

  • Inderjit, Pergl, J., van Kleunen, M., Hejda, M., Babu, C. R., Majumdar, S., Singh P, Singh SP, Salamma S, Rao BR, & Pyšek, P. (2018). Naturalized alien flora of the Indian states: biogeographic patterns, taxonomic structure and drivers of species richness. Biological Invasions, 20, 1625–1638.

  • Jauni, M., Gripenberg, S., & Ramula, S. (2015). Non‐native plant species benefit from disturbance: a meta‐analysis. Oikos, 124(2), 122–129.

  • Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., Guerra, C. A., Jacob, U., Takahashi, Y., Settele, J., Díaz, S., & Purvis, A. (2022). The direct drivers of recent global anthropogenic biodiversity loss. Science Advances, 8(45), eabm9982.

    PubMed  PubMed Central  Google Scholar 

  • Jha, P., Banerjee, S., Bhuyan, P., Sudarshan, M., & Dewanji, A. (2020). Elemental distribution in urban sediments of small waterbodies and its implications: A case study from Kolkata, India. Environmental Geochemistry and Health, 42, 461–482.

    CAS  PubMed  Google Scholar 

  • Jha, R. K., Nölke, N., Diwakara, B. N., Tewari, V. P., & Kleinn, C. (2019). Differences in tree species diversity along the rural-urban gradient in Bengaluru, India. Urban Forestry & Urban Greening, 46, 126464.

    Google Scholar 

  • Kapoor, B., Singh, S., & Kumar, P. (2022). Taro (Colocasia esculenta): Zero wastage orphan food crop for food and nutritional security. South African Journal of Botany, 145, 157–169.

    Google Scholar 

  • Kent, M. (2011). Vegetation description and data analysis: A practical approach. John Wiley & Sons.

    Google Scholar 

  • Knight, T., Price, S., Bowler, D., Hookway, A., King, S., Konno, K., & Richter, R. L. (2021). How effective is ‘greening’of urban areas in reducing human exposure to ground-level ozone concentrations, UV exposure and the ‘urban heat island effect’? An updated systematic review. Environmental Evidence, 10(1), 1–38.

    Google Scholar 

  • Kolkata Municipal Corporation https://www.kmcgov.in/KMCPortal/jsp/KolkataStatistics.jsp. Retrieved May 2016

  • Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G., & Heitman, J. L. (2020). The effects of compost incorporation on soil physical properties in urban soils–A concise review. Journal of Environmental Management, 261, 110209.

    PubMed  Google Scholar 

  • Kuhn, I., Wolf, J., & Schneider, A. (2017). Is there an urban effect in alien plant invasions? Biological Invasions, 19(12), 3505–3513.

    Google Scholar 

  • Liu, Y., Oduor, A. M., Zhang, Z., Manea, A., Tooth, I. M., Leishman, M. R., Xu, X., & Van Kleunen, M. (2017). Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biology, 23(8), 3363–3370.

    PubMed  Google Scholar 

  • Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the world’s worst invasive alien species: A selection from the global invasive species database (Vol. 12). Invasive Species Specialist Group.

    Google Scholar 

  • Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing.

    Google Scholar 

  • Mazumder, S., Saha, J., Nandi, G., Naskar, M., Gayen, J., & Datta, D. (2021). Long-term monitoring of cropland transformation in Kolkata Metropolitan Area, India using open-source geospatial technologies. SN Applied Sciences, 3, 1–19.

    Google Scholar 

  • McGill, B. J. (2003). Does mother nature really prefer rare species or are log-left-skewed SADs a sampling artefact? Ecology Letters, 6(8), 766–773.

    Google Scholar 

  • McKinney, M. L. (2008). Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11(2), 161–176.

    Google Scholar 

  • Midolo, G., Alkemade, R., Schipper, A. M., Benítez-López, A., Perring, M. P., & De Vries, W. (2019). Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Global Ecology and Biogeography, 28(3), 398–413.

    Google Scholar 

  • Miller, A. D., Roxburgh, S. H., & Shea, K. (2011). How frequency and intensity shape diversity–disturbance relationships. Proceedings of the National Academy of Sciences, 108(14), 5643–5648.

    CAS  Google Scholar 

  • Mondal, B., Dolui, G., Pramanik, M., Maity, S., Biswas, S. S., & Pal, R. (2017). Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecological Indicators, 83, 62–73.

    CAS  Google Scholar 

  • Mondal, D., & Banerjee, A. (2021). Exploring peri-urban dynamism in India: Evidence from Kolkata metropolis. Journal of Urban Management, 10(4), 382–392.

    Google Scholar 

  • Mondal, D., & Sen, S. (2020). Methodological dimensions of delineating peri-urban areas: The case of Kolkata metropolis. Environment and Urbanization ASIA, 11(2), 183–194.

    Google Scholar 

  • Mortoja, M. G., & Yigitcanlar, T. (2022). Why is determining peri-urban area boundaries critical for sustainable urban development? Journal of Environmental Planning and Management, 66(1), 67–96.

    Google Scholar 

  • Mungi, N. A., Kaushik, M., Mohanty, N. P., Rastogi, R., Antony Johnson, J., & Qureshi, Q. (2019). Identifying knowledge gaps in the research and management of invasive species in India. Biologia, 74, 623–629.

    Google Scholar 

  • Muzafar, I., Khuroo, A. A., Mehraj, G., Hamid, M., Rashid, I., & Malik, A. H. (2019). Floristic diversity along the roadsides of an urban biodiversity hotspot in Indian Himalayas. Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology, 153(2), 222–230.

    Google Scholar 

  • Narayani, A. R., & Nagalakshmi, R. (2023). Understanding urban sprawl trends in peri urban regions across global cities-survey of case studies. Cities & Health, 7(3), 492–504.

    Google Scholar 

  • Nations, U. (2018). Revision of world urbanization prospects. United Nations: New York

  • Naylo, A., Almeida Pereira, S. I., Benidire, L., El Khalil, H., Castro, P. M., Ouvrard, S., Schwartz, C., & Boularbah, A. (2019). Trace and major element contents, microbial communities, and enzymatic activities of urban soils of Marrakech city along an anthropization gradient. Journal of Soils and Sediments, 19, 2153–2165.

    CAS  Google Scholar 

  • Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., & Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50.

    CAS  PubMed  Google Scholar 

  • Pant, V., Patwardhan, C., Patil, K., Bhowmick, A. R., Mukherjee, A., & Banerjee, A. K. (2021). ILORA: A database of alien vascular flora of India. Ecological Solutions and Evidence, 2(4), e312105.

    Google Scholar 

  • Pathak, H. N., Shrestha, B. B., Bhuju, D. R., & Subedi, D. S. (2021). Spatial distribution of invasive alien plants in Pokhara valley. Nepal. Pakistan Journal of Botany, 53(3), 1015–1024.

    Google Scholar 

  • Pausas, J. G., & Austin, M. P. (2001). Patterns of plant species richness in relation to different environments: An appraisal. Journal of Vegetation Science, 12(2), 153–166.

    Google Scholar 

  • Pawar, H. A., Choudhary, P. D., & Kamat, S. R. (2018). An overview of traditionally used herb, Colocasia esculenta, as a phytomedicine. Medicinal & Aromatic Plants, 7(02), 1–7.

    Google Scholar 

  • Pyšek, P., Hejda, M., Čuda, J., Zambatis, G., Pyšková, K., MacFadyen, S., Storch, D., Tropek, R., & Foxcroft, L. C. (2020b). Into the great wide open: Do alien plants spread from rivers to dry savanna in the Kruger National Park? NeoBiota, 60, 61–77.

    Google Scholar 

  • Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., & Richardson, D. M. (2020a). Scientists’ warning on invasive alien species. Biological Reviews, 95(6), 1511–1534.

    PubMed  Google Scholar 

  • Pyšek, P., Pergl, J., Essl, F., Lenzner, B., Dawson, W., Kreft, H., Weigelt, P., Winter, M., Kartesz, J., Nishino, M., Antonova, L. A., & Kleunen, M. V. (2017). Naturalized alien flora of the world. Preslia, 89(3), 203–274.

    Google Scholar 

  • Reddy, C.S., Bagyanarayana, G., Reddy, K.N., & Raju, V.S. (2008). Invasive alien flora of India.

  • Richardson, D. M., & Pyšek, P. (2012). Naturalization of introduced plants: Ecological drivers of biogeographical patterns. New Phytologist, 196(2), 383–396.

    PubMed  Google Scholar 

  • Richardson, D. M., Pyšek, P., Rejmanek, M., Barbour, M. G., Panetta, F. D., & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and distributions, 6(2), 93–107.

  • Ricotta, C., La Sorte, F. A., Pyšek, P., Rapson, G. L., Celesti-Grapow, L., & Thompson, K. (2009). Phyloecology of urban alien floras. Journal of Ecology, 97(6), 1243–1251.

    Google Scholar 

  • Rolls, R. J., Deane, D. C., Johnson, S. E., Heino, J., Anderson, M. J., & Ellingsen, K. E. (2023). Biotic homogenisation and differentiation as directional change in beta diversity: Synthesising driver–response relationships to develop conceptual models across ecosystems. Biological Reviews, 98, 388–1423.

    Google Scholar 

  • Rozas-Vásquez, D., Spyra, M., Jorquera, F., Molina, S., & Caló, N. C. (2022). Ecosystem services supply from peri-urban landscapes and their contribution to the sustainable development goals: A global perspective. Land, 11(11), 2006.

    Google Scholar 

  • Sahana, M., Hong, H., & Sajjad, H. (2018). Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of the Total Environment, 628, 1557–1566.

    PubMed  Google Scholar 

  • Sahana, M., Ravetz, J., Patel, P. P., Dadashpoor, H., & Follmann, A. (2023). Where Is the peri-urban? a systematic review of peri-urban research and approaches for its identification and demarcation worldwide. Remote Sensing, 15(5), 1316.

    Google Scholar 

  • Sankaran, K. V., Khuroo, A. A., Raghavan, R., Molur, S., Kumar, B., Wong, L. J., & Pagad, S. (2021). Global register of introduced and invasive species—India. Version 1.5. Invasive Species Specialist Group ISSG. Checklist dataset. https://doi.org/10.15468/uvnf8m.Retrieved 24 Aug 2023

  • Seebens, H., Bacher, S., Blackburn, T. M., Capinha, C., Dawson, W., Dullinger, S., Genovesi, P., Hulme, P. E., van Kleunen, M., Kühn, I., Jeschke, J. M., & Essl, F. (2021). Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27(5), 970–982.

    CAS  Google Scholar 

  • Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pyšek, P., van Kleunen, M., Winter, M., Ansong, M., & Essl, F. (2018). Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences, 115(10), E2264–E2273.

    CAS  Google Scholar 

  • Shah, K. K., Tiwari, I., Tripathi, S., Subedi, S., & Shrestha, J. (2020). Invasive alien plant species: A threat to biodiversity and agriculture in Nepal. Agriways, 8(1), 62–73.

    Google Scholar 

  • Sharma, R., Chakraborty, A., & Joshi, P. K. (2015). Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environmental Monitoring and Assessment, 187(1), 1–12.

    Google Scholar 

  • Sharma, S., Joshi, P. K., & Fürst, C. (2022). Unravelling net primary productivity dynamics under urbanization and climate change in the western Himalaya. Ecological Indicators, 144, 109508.

    CAS  Google Scholar 

  • Sheil, D. (2016). Disturbance and distributions: Avoiding exclusion in a warming world. Ecology and Society, 21(1), 10.

    Google Scholar 

  • Shrestha, B. B., Witt, A. B., Shen, S., Khuroo, A. A., Shrestha, U. B., & Naqinezhad, A. (2022). Plant invasions in Asia. In Global plant invasions, pp. 89–127. Springer International Publishing.

  • Somerville, P. D., Farrell, C., May, P. B., & Livesley, S. J. (2020). Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Science of the Total Environment, 706, 135736.

    CAS  PubMed  Google Scholar 

  • Stajerova, K., Šmilauer, P., Brůna, J., & Pyšek, P. (2017). Distribution of invasive plants in urban environment is strongly spatially structured. Landscape Ecology, 32(3), 681–692.

    Google Scholar 

  • Sun, L., Chen, J., Li, Q., & Huang, D. (2020). Dramatic uneven urbanization of large cities throughout the world in recent decades. Nature Communications, 11(1), 5366.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiébaut, G., Tarayre, M., & Rodríguez-Pérez, H. (2019). Allelopathic effects of native versus invasive plants on one major invader. Frontiers in Plant Science, 10, 854.

    PubMed  PubMed Central  Google Scholar 

  • Thiney, U., Banterng, P., Gonkhamdee, S., & Katawatin, R. (2019). Distributions of alien invasive weeds under climate change scenarios in mountainous Bhutan. Agronomy, 9(8), 442.

    Google Scholar 

  • Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E., & van der Heijden, M. G. (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10(1), 4841.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y. J., Chen, D., Yan, R., Yu, F. H., & van Kleunen, M. (2019). Invasive alien clonal plants are competitively superior over co-occurring native clonal plants. Perspectives in Plant Ecology, Evolution and Systematics, 40, 125484.

    Google Scholar 

  • We conserve PA www.conservationtools.org, Retrieved accessed on April 01, 2022

  • Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782.

    CAS  PubMed  Google Scholar 

  • Xiong, C., He, J. Z., Singh, B. K., Zhu, Y. G., Wang, J. T., Li, P. P., Zhang, Q. B., Han, L. L., Shen, J. P., Ge, A. H., Wu, C. F., & Zhang, L. M. (2021). Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environmental Microbiology, 23(4), 1907–1924.

    PubMed  Google Scholar 

  • Yuan, L., Li, J. M., Yu, F. H., Oduor, A. M., & van Kleunen, M. (2021). Allelopathic and competitive interactions between native and alien plants. Biological Invasions, 23(10), 3077–3090.

    Google Scholar 

  • Zhang, L., Yang, L., Zohner, C. M., Crowther, T. W., Li, M., Shen, F., Guo, M., Qin, J., Yao, L., & Zhou, C. (2022). Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Science Advances, 8(27), eabo0095.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Zhou, F., Pan, X., van Kleunen, M., Liu, M., & Li, B. (2019). Evolution of increased intraspecific competitive ability following introduction: The importance of relatedness among genotypes. Journal of Ecology, 107(1), 387–395.

    Google Scholar 

  • Zubair, M. W., Imran, A., Islam, F., Afzaal, M., Saeed, F., Zahra, S. M., Akhtar, M. N., Noman, M., Ateeq, H., Aslam, M. A., Mehta, S., & Awuchi, C. G. (2023). Functional profile and encapsulating properties of Colocasia esculenta (Taro). Food Science & Nutrition, 11, 2440–2449.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Indian Statistical Institute (ISI), Kolkata, India for funding this research; Central National Herbarium, Botanical Survey of India, Shibpur, Howrah for identification and authentication of the plant species. We are grateful to Prof. Anup Dewanji, Applied Statistics Unit, Indian Statistical Institute, for his valuable statistical suggestions. We are also thankful to Mrs. Arpita Ganguly for helping us in making the route maps of the Greater Kolkata field. Mr. Sandip Chatterjee and Mr. Susant Mahankur, AERU, ISI are acknowledged for technical assistance in the field.

Funding

Indian Statistical Institute (ISI), Kolkata, India for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

AD and SC developed the idea and designed the study. SC collected the data, identified and analyze. AD and SC both wrote the paper and gave final approval for publication.

Corresponding author

Correspondence to Seemanti Chatterjee.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Supplementary file2 (DOCX 1474 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Dewanji, A. The distribution of invasive alien plant species in peri-urban areas: a case study from the city of Kolkata. COMMUNITY ECOLOGY 25, 29–44 (2024). https://doi.org/10.1007/s42974-023-00169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-023-00169-z

Keywords

Navigation