Skip to main content
Log in

Arable plant communities of ultramafic and non-ultramafic soils in Beni Bousera (North Morocco)

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Traditional agroecosystems play a vital role in conserving arable plant diversity, which requires the preservation of this ecological heritage. This study aims to compare the species richness, composition, Shannon diversity, and Simpson diversity of arable plant communities in traditional agroecosystems on ultramafic and non-ultramafic substrates in the Beni Bousera massif region of northern Morocco. We surveyed arable plant communities in the study area and conducted a physicochemical analysis of soil composition to explore the relationship between arable plant community composition and soil properties. We observed a significant difference in floristic richness between the two soil types, with a moderate serpentine effect being highly abundant. Among the 167 identified arable plant species, Asteraceae and Poaceae were the most widespread botanical families. Therophytes were the dominant life forms at both study sites, followed by hemicryptophytes and geophytes. Non-ultramafic plant communities were generally more species-rich than the ultramafic site vegetation. We found a differentiation in arable plant communities according to substrate type, with a calcifuge-affinity community at the ultramafic site and a calcicole-affinity community at the non-ultramafic site. Our results highlight the differentiation in arable plant communities at the study sites, despite the proximity and similarity of climate and agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Armengot, L., Blanco-Moreno, J. M., Bàrberi, P., Bocci, G., Carlesi, S., Aendekerk, R., Berner, A., Celette, F., Grosse, M., Huiting, H., Kranzler, A., Luik, A., Mäder, P., Peigné, J., Stoll, E., Delfosse, P., Sukkel, W., Surböck, A., Westaway, S., & Sans, F. X. (2016). Tillage as a driver of change in weed communities: A functional perspective. Agriculture, Ecosystems & Environment, 222, 276–285. https://doi.org/10.1016/j.agee.2016.02.021

    Article  Google Scholar 

  • Armengot, L., Sans, F. X., Fischer, C., Flohre, A., José-María, L., Tscharntke, T., & Thies, C. (2012). The β-diversity of arable weed communities on organic and conventional cereal farms in two contrasting regions. Applied Vegetation Science, 15, 571–579. https://doi.org/10.1111/j.1654-109X.2012.01190.x

    Article  Google Scholar 

  • Ater, M., & Hmimsa, Y. (2008). Agriculture traditionnelle et agrodiversité dans le bassin versant de l’Oued Laou. Travaux de l’Institut Scientifique, Rabat, Série générale, 5, 107–115.

    Google Scholar 

  • Ater, M., Lefébvre, C., Gruber, W., & Meerts, P. (2000). A phytogeochemical survey of the flora of ultramafic and adjacent normal soils in North Morocco. Plant and Soil, 218, 127–135. https://doi.org/10.1023/A:1014925007960

    Article  CAS  Google Scholar 

  • Azdimousa, A., Bourgois, J., Poupeau, G., Vázquez, M., Asebriy, L., & Labrin, E. (2013). Fission track thermochronology of the Beni Bousera peridotite massif (Internal Rif, Morocco) and the exhumation of ultramafic rocks in the Gibraltar Arc. Arabian Journal of Geoscience, 7, 1993–2005. https://doi.org/10.1007/s12517-013-0924-3

    Article  CAS  Google Scholar 

  • Barrett, S. H. (1983). Crop mimicry in weeds. Economic Botany, 37, 255–282.

    Article  Google Scholar 

  • Baugé, M. Y., Lavkulich, L. M., & Schreier, H. E. (2013). Phosphorus and trace metals in serpentine-affected soils of the Sumas Basin, British Columbia. Canadian Journal of Soil Science, 93(3), 359–367. https://doi.org/10.4141/cjss2012-138

    Article  Google Scholar 

  • Benabid, A. (1982). Etudes phytoécologique, biogéographique et dynamique des associations et séries sylvatiques du Rif occidental (Maroc). Dissertation, University St Jérome-Marseille.

  • Benabid, A. (1984). Etude phytoécologique des peuplements forestiers et préforestiers du Rif centro-occidental (Maroc). Travaux de l’Institut scientifique. Série Botanique, 34, 1–64.

    Google Scholar 

  • Bergmeier, E. (2006). The diversity of segetal weeds in Crete (Greece) at species and community level. Annals of Botany, 6, 53–64. https://doi.org/10.4462/annbotrm-9160

    Article  Google Scholar 

  • Bergmeier, E., & Strid, A. (2014). Regional diversity, population trends and threat assessment of the weeds of traditional agriculture in Greece. Botanical Journal of the Linnean Society, 175, 607–623. https://doi.org/10.1111/boj.12181

    Article  Google Scholar 

  • Boulet, C., Tanji, A., & Taleb, A. (1989). Index synonymique des taxons présents dans les milieux cultivés ou artificialisés du Maroc occidental et central. Actes de l’ Institut Agronomique et Veterinaire Hassan II, 9(3–4), 65–98. https://doi.org/10.1111/boj.12181

    Article  Google Scholar 

  • Brady, K. U., Kruckeberg, A. R., & Jr-HD, B. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology Evolution and Systematics, 36, 243–266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730

    Article  Google Scholar 

  • Braun-Blanquet, J., Roussine, N., & Nègre, R. (1952). Les groupements végétaux de France méditerranéenne. Centre National de la Recherche Scientifique.

    Google Scholar 

  • Brooks, R. R. (1987). Serpentine and its vegetation: A multidisciplinary approach. Dioscorides Press. https://doi.org/10.1017/S0016756800010359

    Book  Google Scholar 

  • Brooks, R. R., Dunn, C. E., Edmondson, J., Targuisti, K., Asensi, A., & Reeves, R. D. (1995). Phytosociological and biogeochemical observations on the serpentinite vegetation of the Betic Riffian ultramafic arc of Spain and Morocco. Ofioliti, 20(2), 67–79. https://doi.org/10.1023/A:1014925007960

    Article  Google Scholar 

  • Brullo, S., & Guarino, R. (2007). The Mediterranean weedy vegetation and its origin. Annals of Botany, 7, 101–110. https://doi.org/10.4462/annbotrm-9089

    Article  Google Scholar 

  • Cantero, J. J., Núñez, C. O., Zeballos, S. R., Sfragulla, J., Amuchástegui, A., Brandolin, P., Bonalumi, A., & Cabido, M. R. (2021). Vegetation and flora of marble outcrops and their nearby matrices in mountains of central Argentina. Rock chemistry also matters. Flora, 274, 151757. https://doi.org/10.1016/j.flora.2020.151757

    Article  Google Scholar 

  • Carvallo, G. O., Vergara-Meriño, B., Díaz, A., Villagra, C. A., & Guerrero, P. C. (2019). Rocky outcrops conserve genetic diversity and promote regeneration of a threatened relict tree in a critically endangered ecosystem. Biodiversity and Conservation, 28, 2805–2824. https://doi.org/10.1007/s10531-019-01797-6

    Article  Google Scholar 

  • Chakkour, S., Bergmeier, E., Meyer, S., Kassout, J., Kadiri, M., & Ater, M. (2023). Plant diversity in traditional agroecosystems of North Morocco. Vegetation Classification and Survey, 4, 31–45. https://doi.org/10.3897/VCS.86024

    Article  Google Scholar 

  • Chao, A., & Chiu, C. H. (2016). Nonparametric estimation and comparison of species richness (pp. 1–11). Wiley. https://doi.org/10.1002/9780470015902.a0026329

    Book  Google Scholar 

  • Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1

    Article  Google Scholar 

  • Chiarucci, A., Foggi, B., & Selvi, F. (1995). Garigue plant communities of ultramafic outcrops in Tuscany (central Italy). Webbia, 49, 179–192. https://doi.org/10.1080/00837792.1995.10670581

    Article  Google Scholar 

  • Chiarucci, A., Rocchini, D., Leonzio, C., & De Dominicis, V. (2001). A test of vegetation environment relationship in serpentine soils of Tuscany, Italy. Ecological Research, 16, 627–639. https://doi.org/10.1046/j.1440-1703.2001.00437.x

    Article  Google Scholar 

  • Chicouène, D. (2000). Stratégies de lute contre les mauvaises herbes: préventives ou curatives? I. Aperçu des bases de raisonnement. Phytoma-LDV, 532, 12–16.

    Google Scholar 

  • Coleman, R. G. (1977). Ophiolites: Ancient oceanic lithosphere? Springer.

    Book  Google Scholar 

  • Coleman, R. G., & Jove, C. (1992). Geological origin of serpentinites. In A. J. M. Baker, J. Proctor, & R. D. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils (pp. 1–18). Andover.

    Google Scholar 

  • Cooke, S. S. (1994). The edaphic ecology of two western North American composite species. University of Washington.

    Google Scholar 

  • Damschen, E. I., Harrison, S., Going, B. M., & Anacker, B. L. (2011). Climate change and plant communities on unusual soils. In S. Harrison & N. Rajakaruna (Eds.), Serpentine: The evolution and ecology of a model system (pp. 359–382). University of California Press. https://doi.org/10.1525/california/9780520268357.003.0017

    Chapter  Google Scholar 

  • Deil, U. (1984). The vegetation of the central Rif (Northern Morocco): With special consideration of the cedar forests. Dissertation, University of Bayreuth.

  • Deil, U. (1997). Zur geobotanischen Kennzeichnung von Kulturlandschaften. Vergleichende Untersuchungen in Südspanien und Nordmarokko. Erdwissenschaftliche Forschung.

    Google Scholar 

  • Dessaint, F., Chadoeuf, R., & Barralis, G. (2001). Diversité des communautés de mauvaises herbes des cultures annuelles de Côte-d’Or (France). Biotechnology, Agronomy and Society and Environment, 5, 91–98.

    Google Scholar 

  • Deutschewitz, K., Lausch, A., Kühn, I., & Klotz, S. (2003). Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global Ecology and Biogeography, 12, 299–311. https://doi.org/10.1046/j.1466-822X.2003.00025.x

    Article  Google Scholar 

  • Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Article  Google Scholar 

  • Dumas, J. B. A. (1831). Procedes de l’analyse organic. Annales de chimie et de physique, 47, 198–213.

    Google Scholar 

  • Echevarria, G. (2021). Genesis and Behaviour of Ultramafic Soils and Consequences for Nickel Biogeochemistry. In: van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, MO., Morel, J.L. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham.https://doi.org/10.1007/978-3-030-58904-2_11

  • El Antri, M. (1983). Contribution à l'étude des groupements commensaux des cultures au Maroc: Aspects synsystématique et agronomique. Dissertation, University of Paris-Sud.

  • El Ghalabzouri, A., Ajbiloiu, R., Mariotti, M. G., Targuisti, K., & Ater, A. (2015). Vegetation of Beni Bousera (northen Morocco) ultramafic soils and adjacent non-ultramafic soils in relation to edaphic factors. Australian Journal of Botany, 63(2), 353–366. https://doi.org/10.1071/BT14320

    Article  CAS  Google Scholar 

  • EPPO Global Database. (2017). Retrieved November 12, 2019, form https://gd.eppo.int/

  • Erviö, R., Hyvärinen, S., Erviö, L. R., & Salonen, J. (1994). Soil properties affecting weed distribution in spring cereal and vegetable fields. Agricultural and Food Science, 3(5), 497–504. https://doi.org/10.23986/afsci.72711

    Article  Google Scholar 

  • Fanfarillo, E., Kasperski, A., Giuliani, A., & Abbate, G. (2019a). Shifts of arable plant communities after agricultural intensification: A floristic and ecological diachronic analysis in maize fields of Latium (central Italy). Botany Letters, 166, 356–365. https://doi.org/10.1080/23818107.2019.1638829

    Article  CAS  Google Scholar 

  • Fanfarillo, E., Latini, M., Iberite, M., Bonari, G., Nicolella, G., Rosati, L., Salerno, G., & Abbate, G. (2020a). The segetal flora of winter cereals and allied crops in Italy: Species inventory with chorological, structural and ecological features. Plant Biosystems, 154, 935–946. https://doi.org/10.1080/11263504.2020.1739164

    Article  Google Scholar 

  • Fanfarillo, E., Petit, S., Dessaint, F., Rosati, L., & Abbate, G. (2020b). Species composition, richness, and diversity of weed communities of winter arable land in relation to geo-environmental factors: A gradient analysis in mainland Italy. Botany, 98(7), 381–392. https://doi.org/10.1139/cjb-2019-0178

    Article  Google Scholar 

  • Fanfarillo, E., Scoppola, A., Lososová, Z., & Abbate, G. (2019b). Segetal plant communities of traditional agroecosystems: A phytosociological survey in central Italy. Phytocoenologia, 49(2), 165–183. https://doi.org/10.1127/phyto/2019/0282

    Article  Google Scholar 

  • Fennane, M., & Ibn Tattou, M. (2012). Statistiques et commentaires sur l’inventaire actuel de la flore vasculaire du Maroc. Bulletin de l’Institut Scientifique, Rabat, 34, 1–9.

    Google Scholar 

  • Fennane, M., Ibn Tattou, M., & El Oualidi, J. (2014). Flore pratique du Maroc (Vol. 3). Travaux de l’Institut Scientifique Série Botanique.

    Google Scholar 

  • Fennane, M., Ibn Tattou, M., Mathez, J., Ouyahya, A., & El Oualidi, J. (1999). Flore pratique du Maroc (Vol. 1). Travaux de l’Institut Scientifique Série Botanique.

    Google Scholar 

  • Fennane, M., Ibn Tattou, M., Ouyahya, A., & El Oualidi, J. (2007). Flore pratique du Maroc (Vol. 2). Travaux de l’Institut Scientifique Série Botanique.

    Google Scholar 

  • Fernández, S., Seoane, S., & Merino, A. (1999). Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils. Communications in Soil Science and Plant Analysis, 30, 1867–1884. https://doi.org/10.1080/00103629909370338

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fitzsimons, J. A., & Michael, D. R. (2017). Rocky outcrops: A hard road in the conservation of critical habitats. Biological Conservation, 211, 36–44. https://doi.org/10.1016/j.biocon.2016.11.019

    Article  Google Scholar 

  • Frets, E., Tommasi, A., Garrido, C., Vauchez, A., Mainprice, D., Targuisti, K., & Amri, I. (2014). The Beni Bousera peridotite (Rif Belt, Morocco): An oblique-slip low-angle shear zone thinning the subcontinental mantle lithosphere. Journal of Petrology, 55, 283–313. https://doi.org/10.1093/petrology/egt067

    Article  CAS  Google Scholar 

  • Fried, G., Norton, L. R., & Reboud, X. (2008). Environmental and management factors determining weed species composition and diversity in France. Agriculture, Ecosystems & Environment, 128, 68–76. https://doi.org/10.1016/j.agee.2008.05.003

    Article  Google Scholar 

  • Gaba, S., Chauvel, B., Dessaint, F., Bretagnolle, V., & Petit, S. (2010). Weed species richness in winter wheat increases with landscape heterogeneity. Agriculture, Ecosystems & Environment, 138(3), 318–323. https://doi.org/10.1016/j.agee.2010.06.005

    Article  Google Scholar 

  • García-Fayos, P., Bochet, E., & Cerdà, A. (2010). Seed removal susceptibility through soil erosion shapes vegetation composition. Plant and Soil, 334, 289–297. https://doi.org/10.1007/s11104-010-0382-6

    Article  CAS  Google Scholar 

  • Garnier, J., Quantin, C., Guimarães, E., Garg, V. K., Martins, E. S., & Becquer, T. (2009). Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma, 151, 204–214.

    Article  CAS  Google Scholar 

  • Gaston, L. A., Locke, M. A., Zablotowicz, R. M., & Reddy, K. N. (2001). Spatial variability of soil properties and weed populations in the Mississippi delta. Soil Science Society of America Journal, 65(2), 0361–5995. https://doi.org/10.2136/sssaj2001.652449x

    Article  Google Scholar 

  • El Ghalabzouri, A. (2015). Interaction sol-végétation: éxemple d’affleurements ultramafiques en region Mediterranéenne. Dissertation, University of Abelmalék Essaadi Tetouan.

  • Hammer, Ø., Harper, D. A. T., & Paul, D. R. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontol Electronica, 4, 4–9.

    Google Scholar 

  • Hidalgo, B., Saavedra, M., & Garcia-Torres, L. (1990). Weed flora of dryland crops in the Córdoba region (Spain). Weed Research, 30, 309–318. https://doi.org/10.1111/j.1365-3180.1990.tb01718.x

    Article  Google Scholar 

  • Hjort, J., Gordon, J. E., Gray, M., & Hunter, M. L., Jr. (2015). Why geodiversity matters in valuing nature’s stage. Conservation Biology, 29, 630–639. https://doi.org/10.1111/cobi.12510

    Article  PubMed  Google Scholar 

  • Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant diversity. Global Ecology and Biogeography, 00, 1–17. https://doi.org/10.1111/geb.13151

    Article  Google Scholar 

  • Kazi Tani, Ch., Le Bourgeois, T., & Munoz, F. (2010). Aspects floristiques des adventices du domaine phytogéographique oranais (Nord-Ouest algérien) et persistance d’espèces rares et endémiques. Flora Mediterranea, 20, 29–46.

    Google Scholar 

  • Kidd, P. S., Bani, A., Benizri, E., Gonnelli, C., Hazotte, C., Kisser, J., Konstantinou, M., Kuppens, T., Kyrkas, D., Laubie, B., & Malina, R. (2018). Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Frontiers in Environmental Science, 6, 6–44. https://doi.org/10.3389/fenvs.2018.00044

    Article  Google Scholar 

  • Kim, J. M., & Shim, J. K. (2008). Toxic effects of serpentine soils on plant growth. Journal of Ecology and Field Biology, 31, 327–331. https://doi.org/10.5141/JEFB.2008.31.4.327

    Article  Google Scholar 

  • Korres, N. E., Norsworthy, J. K., Brye, K. R., Skinner, V., & Mauromoustakos, A. (2017). Relationships between soil properties and the occurrenceof the most agronomically important weed species in the field margins of eastern Arkansas: Implications for weed management infield margins. Weed Research, 57, 159–171. https://doi.org/10.1111/wre.12249

    Article  CAS  Google Scholar 

  • Kruckeberg, A. R. (1954). The ecology of serpentine soils III. Plant species in relation to serpentine soils. Ecology, 35(2), 267–274.

    Google Scholar 

  • Kruckeberg, A. R. (1985). Biological aspects of endemism in higher plants. Annual Review of Ecology and Systematics, 16, 447–479.

    Article  Google Scholar 

  • Kruckeberg, A. R. (1986). An essay: The stimulus of unusual geologies for plant speciation. Systematic Botany, 11, 455–463. https://doi.org/10.2307/2419082

    Article  Google Scholar 

  • Kruckeberg, A. R. (2002). Geology and Plant Life: The Effects of Lan Types on Plants. University of Washington Press.

  • Kruckeberg, A. R. (2004). Geology and plant life. University of Washington Press.

    Google Scholar 

  • Le Bourgeois, T. H. (1993). Les mauvaises herbes dans la rotation cotonnière au Nord-Cameroun (Afrique). Dissertation, Université Montpellier II

  • Lee, B., Graham, R., Laurent, T., Amrhein, C., & Creasy, R. (2001). Spatial distributions of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Science Society of America Journal, 65, 1183–1196. https://doi.org/10.2136/sssaj2001.6541183x

    Article  CAS  Google Scholar 

  • Légère, A., Stevenson, F. C., & Benoit, D. L. (2005). Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Research, 45, 303–315. https://doi.org/10.1111/j.1365-3180.2005.00459.x

    Article  Google Scholar 

  • López González, G. (1975). Contribución al estudio florístico y fitosociológico de Sierra de Aguas. Acta Botanica Malacitana, 1, 81–205. https://doi.org/10.24310/Actabotanicaabmabm.v1i.9716

    Article  Google Scholar 

  • Lososová, Z., Chytrý, M., Cimalová, S., Kropáč, Z., Otýpková, Z., Pyšek, P., & Tichý, L. (2004). Weed vegetation of arable land in central Europe: Gradients of diversity and species composition. Journal of Vegetation Science, 15, 415–422. https://doi.org/10.1111/j.1654-1103.2004.tb02279.x

    Article  Google Scholar 

  • Lososová, Z., & Cimalová, S. (2009). Effects of different cultivation types on native and alien weed species richness and diversity in Moravia (Czech Republic). Basic and Applied Ecology, 10, 456–465. https://doi.org/10.1016/j.baae.2008.11.001

    Article  Google Scholar 

  • Maas, J. L., & Stuntz, D. E. (1969). Mycoecology on serpentine soil. Mycologia, 61(6), 1106–1116. https://doi.org/10.2307/3757496

    Article  CAS  PubMed  Google Scholar 

  • Maillet, J. (1981). Evolution des peuplements dans le Montpellieraie sous la pression des techniques culturales. Dissertation, University of Montpellier

  • Manthei, C. D. (2012). Geochemical properties of the Beni Bousera (N. Morocco) peridotites: A field and laboratory approach to understanding melt infiltration and extraction in an orogenic peridotite massif. Massachusetts Institute of Technology.

    Google Scholar 

  • Marshall, E. J. P., Brown, V. K., Boatman, N. D., Lutman, P. J. W., Squire, G. R., & Ward, L. K. (2003). The role of weeds in supporting biological diversity within crop fields. Weed Research, 43, 77–89. https://doi.org/10.1046/j.1365-3180.2003.00326.x

    Article  Google Scholar 

  • Mas, M. T., & Verdú, A. M. (2003). Tillage system effects on weed communities in a 4-year crop rotation under Mediterranean dryland conditions. Soil and Tillage Research, 74, 15–24. https://doi.org/10.1016/S0167-1987(03)00079-5

    Article  Google Scholar 

  • McElroy, J. S. (2014). Vavilovian Mimicry: Nikolai Vavilov and his little-known impact on weed science. Weed Science, 62, 207–216. https://doi.org/10.1614/WS-D-13-00122.1

    Article  CAS  Google Scholar 

  • Metcalfe, H., Hassall, H. M., Boinot, S., & Storkey, J. (2019). The contribution of spatoal mass effects to plant diversity in arable fields. Journal of Applied Ecology, 56, 1560–1574. https://doi.org/10.1111/1365-2664.13414

    Article  PubMed  Google Scholar 

  • Mittermeier, R. A., Gil, P. G., Hoffman, M., Pilgrim, J., Brooks, T. M., Mittermeier, C. G., Lamoreux, J., & Da Fonseca, G. A. B. (2005). Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX.

    Google Scholar 

  • Munoz, F., Fried, G., Armengot, L., Bourgeois, B., Bretagnolle, V., Chadoeuf, J., Mahaut, L., Plumejeaud, C., Storkey, J., Violle, C., & Gaba, S. (2020). Ecological specialization and rarity of arable weeds: Insights from a comprehensive survey in France. Plants, 9(7), 824. https://doi.org/10.3390/plants9070824

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nègre, R. (1956). Recherches phytosociologiques sur le Sedd-El-Messjoun. Travaux de l’Institut Scientifique Chérifien, Série Botanique, 10, 1–193.

    Google Scholar 

  • Nguyen, H. H., Maneepong, S., & Suraninpong, P. (2017). Effects of potassium, calcium, and magnesium ratios in soil on their uptake and fruit quality of Pummelo. Journal of Agricultural Science, 9(4), 110–121. https://doi.org/10.5539/jas.v9n12p110

    Article  Google Scholar 

  • Nordmeyer, H., & Häusler, A. (2004). Einfluss von Bodeneigenschaften auf die Segetalflora von Ackerflächen. Journal of Plant Nutrition and Soil Science, 167, 328–336. https://doi.org/10.1002/jpln.200221071

    Article  CAS  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., & Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5–7. Retrieved November 28, 2020, from https://cran.r-project.org/package=vegan

  • Pätzold, S., Hbirkou, C., Dicke, D., Gerhards, R., & Welp, G. (2020). Linking weed patterns with soil properties: a long-term case study. Precision Agriculture, 21, 569–588. https://doi.org/10.1007/s11119-019-09682-6

    Article  Google Scholar 

  • Pearson, D. G., Davies, G. R., & Nixon, P. H. (1993). Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. Journal of Petrology, 34, 125–172. https://doi.org/10.1093/petrology/34.1.125

    Article  CAS  Google Scholar 

  • Pearson, D. G., Davies, G. R., Nixon, P. H., & Milledge, H. J. (1989). Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature, 338, 60–62. https://doi.org/10.1038/338060a0

    Article  Google Scholar 

  • Pearson, D. G., & Nowell, G. M. (2004). Re–Os and Lu–Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif: Implications for mixed peridotite-pyroxenite mantle sources. Journal of Petrology, 45, 439–455. https://doi.org/10.1093/petrology/egg102

    Article  CAS  Google Scholar 

  • Pérez-Latorre, A. V., Hidalgo Triana, N., & Cabezudo, B. (2013a). Composition, ecology and conservation of the south-Iberian serpentine flora in the context of the Mediterranean basin. Anales Del Jardin Botánico De Madrid, 70, 62–71. https://doi.org/10.3989/ajbm.2334

    Article  Google Scholar 

  • Pérez-Latorre, A. V., Hidalgo Triana, N., Casimiro-Soriguer, F., & Cabezudo, B. (2013b). Flora y vegetación serpentinícola ibérica: Sierras de Alpujata y de La Robla (Málaga, España). Lagascalia, 33, 43–74.

    Google Scholar 

  • Proctor, D. E. (1971). A hyperbolic system for obtaining VHF radio pictures of lightning. Journal of Geophysical Research, 76(6), 1478–1489. https://doi.org/10.1029/JC076i006p01478

    Article  Google Scholar 

  • Proctor, J. (1999). Toxins, nutrient shortage and droughts: The serpentine challenge. Trends in Ecology & Evolution, 14, 334–335. https://doi.org/10.1016/S0169-5347(99)01698-5

    Article  Google Scholar 

  • Proctor, J., & Nagy, L. (1992). Ultramafic rocks and their vegetation: an overview. In A. J. M. Baker, J. Proctor, & R. D. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils (pp. 469–494). Intercept.

    Google Scholar 

  • Pyšek, P., Jarošík, V., Kropáč, Z., Chytrý, M., Wild, J., & Tichý, L. (2005). Effects of abiotic factors on species richness and cover in central European weed communities. Agriculture, Ecosystems & Environment, 109, 1–8. https://doi.org/10.1016/j.agee.2005.02.018

    Article  Google Scholar 

  • Quézel, P. (1978). Analysis of the Flora of Mediterranean and Saharan Africa. Annals of the Missouri Botanical Garden, 65(2), 479–534. https://doi.org/10.2307/2398860

    Article  Google Scholar 

  • Quézel, P., Barbero, M., Benabed, A., Loisel, R., & Rivas-Martinez, S. (1988). Contribution à l’etude des groupements pré-forestiers et des matorrals rifains. Ecol Mediterranea, 14(1/2), 78–112.

    Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved June 22, 2020, from https://www.R-project.org

  • Rajakaruna, N. (2004). The edaphic factor in the origin of plant species. International Geologiy Review, 46, 471–478. https://doi.org/10.2747/0020-6814.46.5.471

    Article  Google Scholar 

  • Ramôa, S., Oliveira e Silva, P., Vasconcelos, T., Fortes, P., & Portugal, J. (2015). Study of autumn-winter weeds in Portugal and its ecological preferences. Planta Daninha, 33, 387–394. https://doi.org/10.1590/S0100-83582015000300001

    Article  Google Scholar 

  • Raunkiaer, C., Gilbert-Carter, H., Fausbøll, A., & Tansley, A. G. (1934). The life forms of plants and statistical plant geography. The Clarendon Press.

    Google Scholar 

  • Ricketts, T. H. (2001). The matrix matters: Effective isolation in fragmented landscapes. The American Naturalist, 158, 87–99. https://doi.org/10.1086/320863

    Article  CAS  PubMed  Google Scholar 

  • Roberts, A., & Proctor, J. (1992). The ecology of areas with serpentinized rocks. A world view. Springer. https://doi.org/10.1007/978-94-011-3722-5

    Book  Google Scholar 

  • Roschewitz, I., Gabriel, D., Tscharntke, T., & Thies, C. (2005). The effects of landscape complexity on arable weed species diversity in organic and conventional farming. Journal of Applied Ecology, 42, 873–882. https://doi.org/10.1111/j.1365-2664.2005.01072.x

    Article  Google Scholar 

  • Saavedra, M., Garcia-Torres, L., Hernandez-Bermejo, E., & Hidalgo, B. (1989). Weed flora in the Middle Valley of the Guadalquivir, Spain. Weed Research, 29, 167–179. https://doi.org/10.1111/j.1365-3180.1989.tb00857.x

    Article  Google Scholar 

  • Sanz-Elorza, M. S. (2009). Flora y vegetación arvense y ruderal de la provincia de Huesca. Monografias de Botanica Ibérica.

    Google Scholar 

  • Selvi, F. (2007). Diversity, geographic variation and conservation of the serpentine flora of Tuscany. Biodiversity and Conservation, 16, 1423–1439. https://doi.org/10.1007/s10531-006-6931-x

    Article  Google Scholar 

  • Šmilauer, P., & Lepš, J. (2014). Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press. https://doi.org/10.1017/CBO9781139627061

    Book  Google Scholar 

  • Storkey, J., Holst, N., Bøjer, O. Q., Bigongiali, F., Bocci, G., Colbach, N., Dorner, Z., Riemens, M. M., Sartorato, I., Sønderskov, M., & Verschwele, A. (2015). Combining a weed traits database with a population dynamics model predicts shifts in weed communities. Weed Research, 55(2), 206–218. https://doi.org/10.1111/wre.12126

    Article  CAS  PubMed  Google Scholar 

  • Susaya, J., Kim, K. H., Asio, V., Chen, Z. S., & Navarrete, I. (2010). Quantifying nickel in soils and plants in an ultramafic area in Philippines. Environmental Monitoring and Assessment, 167, 505–514. https://doi.org/10.1007/s10661-009-1067-6

    Article  CAS  PubMed  Google Scholar 

  • Sutherland, S. (2004). What makes a weed a weed: Life history traits of native and exotic plants in the USA. Oecologia, 141, 24–39. https://doi.org/10.1111/j.1365-3180.1989.tb00857.x

    Article  PubMed  Google Scholar 

  • Taleb, A., Bouhache, M., & Rzozi, S. B. (1998). Flore adventice des céréales d’automne au Maroc. Actes de l’ Institut Agronomique et Veterinaire Hassan II, 18(2), 121–130.

    Google Scholar 

  • Tanji, A., & Boulet, C. (1986). Diversité floristique et biologie des adventices du Tadla (Maroc). Weed Research, 26, 159–166. https://doi.org/10.1111/j.1365-3180.1986.tb00691.x

    Article  Google Scholar 

  • Targuisti, K. (1994). Petrologia y geoquimica de los macizos ultramaficos de Ojen (Andalucia) y de Beni Bousera (Rif Septentrional, Marruecos). Dissertation, University of Granada.

  • ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5). Biometris.

    Google Scholar 

  • Travlos, I. S., Cheimona, N., Roussis, I., & Bilalis, D. J. (2018). Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Frontiers in Environmental Science, 6, 1–11. https://doi.org/10.3389/fenvs.2018.00011

    Article  Google Scholar 

  • Walker, R. B., Walker, H. M., & Ashworth, P. R. (1955). Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiology, 30(3), 214–221. https://doi.org/10.1104/pp.30.3.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker, R. H. (1954). The ecology of serpentine soils. Ecology, 35(2), 258–259. https://doi.org/10.1016/S0065-2504(08)60291-3

    Article  Google Scholar 

  • Zanin, G., Otto, S., Riello, L., & Borin, M. (1997). Ecological interpretation of weed flora dynamics under different tillage systems. Agriculture, Ecosystems & Environment, 66(3), 177–188. https://doi.org/10.1016/S0167-8809(97)00081-9

    Article  Google Scholar 

  • Zidane, L., Salhi, S., Fadli, M., & El Antri, M. (2010). Étude des groupements d’adventices dans le Maroc Occidental. Biotechnology, Agronomy and Society and Environment, 14, 153–166.

    Google Scholar 

Download references

Acknowledgements

We thank all members of the BioAgrodiversity team for their valuable feedback and suggestions. A special thanks goes out to professor Hafid Achtak for his assistance in improving the manuscript's English. The authors are grateful to the Moroccan farmers for allowing access to their land and to the reviewers for their useful suggestions and comments.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

SC and MA planned the research. SC, AELG, KK and MA conducted the field sampling; SC and MK identified the botanical taxa; SC, JK and MA performed statistical analyses and prepared figures and tables; all authors reviewed and contributed to the final version.

Corresponding author

Correspondence to Soufian Chakkour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary File 1.

Catalogue of the identified species with their EPPO code, Famille, Life forms and Absolute frequency (Fa) in ultramafic (U) and non-ultramafic (NU) sites. Life forms (LF) are: Th: Therophyte, G: Geophyte, Hem: Hemicryptophyte, Ch: Chamaephyte. (DOCX 65 kb)

Supplementary File 2.

Detrended Correspondence Analysis (DCA) results. (DOCX 407 kb)

Supplementary File 3.

Conditional effects of canonical correspondence analysis (CCA) explanatory variables using step-wise forward selection. (DOCX 20 kb)

Supplementary File 4.

Raw matrices of species abundances and soil variables. (XLSX 45 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakkour, S., Kassout, J., Kadaoui, K. et al. Arable plant communities of ultramafic and non-ultramafic soils in Beni Bousera (North Morocco). COMMUNITY ECOLOGY 24, 171–187 (2023). https://doi.org/10.1007/s42974-023-00140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-023-00140-y

Keywords

Navigation