Abstract
Land use has transformed landscapes, altered water and soil physical–chemical parameters, reduced habitat availability, and limited species occurrence. Here, we investigated the contribution of sites (local contribution to beta diversity—LCBD) and species (species contribution to beta diversity—SCBD) to macrophyte total β-diversity in streams inserted in a gradient of land use. We also investigated which life forms are important to SCBD and which environmental parameters are related to the change in the species composition. Sampling took place in 17 streams located in Paragominas, Pará, Brazil in September 2017. We recorded 36 species and four life forms. We identified five sites with high LCBD. The species with the four highest SCBD scores belong to the amphibious life form. CDI (Catchment Disturbance Index) and canopy cover, variables that show land use degrees, drove the distribution of macrophyte species in the land use gradient. CDI presented a positive relationship with LCBD, whereas canopy cover presented a negative relationship, i.e., a greater composition of unique species and greater diversity of macrophytes life forms were found in more altered streams than in preserved ones, due to canopy openness. Nonetheless, we emphasize that although the environmental characteristics of altered streams favored the establishment of more macrophytes species, the species found could be generalists and the pattern for other types of environments is usually the opposite. Therefore, studies focusing on temporal patterns will be important for this area to understand how the macrophyte community will stabilize. This study brings important contributions to elucidate the effects of land use on macrophytes distribution and the role played by different life forms.
Similar content being viewed by others
References
Akasaka, M., Takamura, N., Mitsuhashi, H., & Kadono, Y. (2010). Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshwater Biology, 55, 909–922. https://doi.org/10.1111/j.1365-2427.2009.02334.x
Alahuhta, J., Johnson, L. B., Olker, J., & Heino, J. (2014). Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecological Complexity, 20, 61–68. https://doi.org/10.1016/j.ecocom.2014.08.003
Alahuhta, J., Kosten, S., Akasaka, M., et al. (2017). Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, 44, 1758–1769. https://doi.org/10.1111/jbi.12978
Alderton, E., Sayer, C. D., Davies, R., et al. (2017). Buried alive: Aquatic plants survive in ‘ghost ponds’ under agricultural fields. Biological Conservation, 212, 105–110. https://doi.org/10.1016/j.biocon.2017.06.004
Allan, J. D. (2004). Influence of land use and landscape setting on the ecological status of rivers. Limnetica, 23, 187–198. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
Amaral, M. C. E., Bittrich, V., Faria, A. D., et al. (2008). Guia de Campo para Plantas Aquáticas e Palustres do Estado de São Paulo, 1st edn. Holos, Editora, Ribeirão Preto.
Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9, 683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x
Asner, G. P., Llactayo, W., Tupayachi, R., & Luna, E. R. (2013). Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proceedings of the National Academy of Sciences of the United States of America, 110, 18454–18459. https://doi.org/10.1073/pnas.1318271110
Besemer, K. (2015). Biodiversity, community structure and function of biofilms in stream ecosystems. Research in Microbiology, 166, 774–781. https://doi.org/10.1016/j.resmic.2015.05.006
Bilton, D. T., Mcabendroth, L., Bedford, A., & Ramsay, P. M. (2006). How wide to cast the net? Cross-taxon congruence of species richness, community similarity and indicator taxa in ponds. Freshwater Biology, 51, 578–590. https://doi.org/10.1111/j.1365-2427.2006.01505.x
Bleich, M. E., Piedade, M. T. F., Mortati, A. F., & André, T. (2015). Autochthonous primary production in southern Amazon headwater streams: Novel indicators of altered environmental integrity. Ecological Indicators, 53, 154–161. https://doi.org/10.1016/j.ecolind.2015.01.040
Borcard, D., Legendre, P., (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices.
Brito, J. S., Michelan, T. S., & Juen, L. (2021). Aquatic macrophytes are important substrates for Libellulidae (Odonata) larvae and adults. Limnology (tokyo), 22, 139–149. https://doi.org/10.1007/s10201-020-00643-x
Bunn, S. E., & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30, 492–507.
Casotti, C. G., Kiffer, W. P., Costa, L. C., et al. (2015). Assessing the importance of riparian zones conservation for leaf decomposition in streams. Natureza e Conservacao, 13, 178–182. https://doi.org/10.1016/j.ncon.2015.11.011
Castello, L., & Macedo, M. N. (2016). Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology, 22, 990–1007. https://doi.org/10.1111/gcb.13173
Catian, G., da Silva, D. M., Súarez, Y. R., & Scremin-Dias, E. (2018). Effects of flood pulse dynamics on functional diversity of macrophyte communities in the Pantanal Wetland. Wetlands, 38, 975–991. https://doi.org/10.1007/s13157-018-1050-5
Cunha, E. J., Cruz, G. M., Faria, A. P. J., et al. (2022). Urban development and industrialization impacts on semiaquatic bugs diversity: A case study in eastern Amazonian streams. Water Biology and Security. https://doi.org/10.1016/j.watbs.2022.100061
de Esteves, F. A., (2011) Fundamentos de Limnologia, 3rd edn. Interciência, Rio de Janeiro.
de Paiva, C. K. S., Faria, A. P. J., Calvão, L. B., & Juen, L. (2021). The anthropic gradient determines the taxonomic diversity of aquatic insects in Amazonian streams. Hydrobiologia, 848, 1073–1085. https://doi.org/10.1007/s10750-021-04515-y
Deosti, S., de Fátima, B. F., Lansac-Tôha, F. M., et al. (2021). Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia, 848, 1475–1490. https://doi.org/10.1007/s10750-021-04527-8
Dray, S., Legendre, P., & Peres-Neto, P. R. (2006). Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell, 196, 483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.015
Drucker, D. P., Costa, F. R. C., & Magnusson, W. E. (2008). How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. Journal of Tropical Ecology, 24, 65–74. https://doi.org/10.1017/S0266467407004701
Elo, M., Alahuhta, J., Kanninen, A., et al. (2018). Environmental characteristics and anthropogenic impact jointly modify aquatic macrophyte species diversity. Frontiers in Plant Science, 9, 1–15. https://doi.org/10.3389/fpls.2018.01001
Dray, S., Bauman, D., Blanchet, G., et al. (2022). Adespatial: Multivariate multiscale spatial analysis. R package version 0.3–16. https://cran.r-project.org/package=adespatial.
FAO (2011) The state of forests in the Amazon Basin, Congo Basin and Southeast Asia. Food and Agriculture Organization of the United Nations, Rome.
Fares, A. L. B., Calvão, L. B., Torres, N. R., et al. (2020). Environmental factors affect macrophyte diversity on Amazonian aquatic ecosystems inserted in an anthropogenic landscape. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2020.106231
Felipe-Lucia, M. R., Soliveres, S., Penone, C., et al. (2020). Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences, 117, 28140–28149. https://doi.org/10.1073/pnas.2016210117
Finn, D. S., Bonada, N., Múrria, C., & Hughes, J. M. (2011). Small but mighty: Headwaters are vital to stream network biodiversity at two levels of organization. Journal of the North American Benthological Society, 30, 963–980. https://doi.org/10.1899/11-012.1
Gardner, T. A., Ferreira, J., Barlow, J., et al. (2013). A social and ecological assessment of tropical land uses at multiple scales: The Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120166. https://doi.org/10.1098/rstb.2012.0166
Gomes, A. C. A. M., Gomes, L. F., Roitman, I., et al. (2020). Forest cover influences zooplanktonic communities in Amazonian streams. Aquatic Ecology, 54, 1067–1078. https://doi.org/10.1007/s10452-020-09794-6
Guida-Johnson, B., & Zuleta, G. A. (2013). Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agriculture, Ecosystems & Environment, 181, 31–40. https://doi.org/10.1016/j.agee.2013.09.002
Hansen, M. C., Stehman, S. V., & Potapov, P. V. (2010). Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences, 107, 8650–8655. https://doi.org/10.1073/pnas.0912668107
Heartsill-Scalley, T., Aide, T. M., (2003). Riparian vegetation and stream condition in a tropical agriculture-secondary forest mosaic. Ecological Applications, 13, 225–234. https://doi.org/10.1890/1051-0761(2003)013[0225:RVASCI]2.0.CO;2
Heino, J. (2009). Species co-occurrence, nestedness and guild-environment relationships in stream macroinvertebrates. Freshwater Biology, 54, 1947–1959. https://doi.org/10.1111/j.1365-2427.2009.02250.x
Heino, J., Ilmonen, J., Kotanen, J., et al. (2009). Surveying biodiversity in protected and managed areas: Algae, macrophytes and macroinvertebrates in boreal forest streams. Ecological Indicators, 9, 1179–1187. https://doi.org/10.1016/j.ecolind.2009.02.003
Heino, J., Melo, A. S., & Bini, L. M. (2015). Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology, 60, 223–235. https://doi.org/10.1111/fwb.12502
Hoyer, M., Frazer, T., & Notestein, S. (2004). Vegetative characteristics of three low-lying Florida coastal rivers in relation to flow, light, salinity and nutrients. Hydrobiologia, 528, 31–43. https://doi.org/10.1007/s10750-004-1658-8
Jiang, B., Xing, Y., Zhang, B., et al. (2018). Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China. Environmental Science and Pollution Research, 25, 31272–31282. https://doi.org/10.1007/s11356-018-3069-9
Johnson, R. K., & Angeler, D. G. (2014). Effects of agricultural land use on stream assemblages: Taxon-specific responses of alpha and beta diversity. Ecological Indicators, 45, 386–393. https://doi.org/10.1016/j.ecolind.2014.04.028
Kolada, A. (2010). The use of aquatic vegetation in lake assessment: Testing the sensitivity of macrophyte metrics to anthropogenic pressures and water quality. Hydrobiologia, 656, 133–147. https://doi.org/10.1007/s10750-010-0428-z
Kuhar, U., Gregorc, T., Renčelj, M., et al. (2007). Distribution of macrophytes and condition of the physical environment of streams flowing through agricultural landscape in north-eastern Slovenia. Limnologica, 37, 146–154. https://doi.org/10.1016/j.limno.2006.11.003
Leão, H., Siqueira, T., Torres, N. R., & de AssisMontag, L. F. (2020). Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecological Indicators, 111, 106039. https://doi.org/10.1016/j.ecolind.2019.106039
Legendre, P., & de Cáceres, M. (2013). Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16, 951–963. https://doi.org/10.1111/ele.12141
Ligeiro, R., Hughes, R. M., Kaufmann, P. R., et al. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25, 45–57. https://doi.org/10.1016/j.ecolind.2012.09.004
Lorenzi, H., (2008). Plantas daninhas do Brasil: terrestres, aquática, parasitas e toxicas, 4th edn. Instituto Plantarum, Nova Odessa.
Mackay, S. J., James, C. S., & Arthington, A. H. (2010). Macrophytes as indicators of stream condition in the wet tropics region, Northern Queensland, Australia. Ecological Indicators, 10, 330–340. https://doi.org/10.1016/j.ecolind.2009.06.017
Montag, L. F. A., Winemiller, K. O., Keppeler, F. W., et al. (2019). Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon. Ecology of Freshwater Fish, 28, 317–329. https://doi.org/10.1111/eff.12455
Morrison, B. M. L., Brosi, B. J., & Dirzo, R. (2020). Agricultural intensification drives changes in hybrid network robustness by modifying network structure. Ecology Letters, 23, 359–369. https://doi.org/10.1111/ele.13440
Naiman, R. J., Décamps, H., McClain, M. E., Likens, G. E. (2005). Catchments and the Physical Template. In: Riparia. Elsevier, pp 19–48
Nicolet, P., Biggs, J., Fox, G., et al. (2004). The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation, 120, 261–278. https://doi.org/10.1016/j.biocon.2004.03.010
Nobre, C. A., Sampaio, G., Borma, L. S., et al. (2016). Land-use and climate change risks in the amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy Science USA, 113, 10759–10768. https://doi.org/10.1073/pnas.1605516113
Oksanen, J., Blanchet, F. G., Friendly, M., et al. (2019). Vegan: Community Ecology Package.
Paixão, E. C., da Noronha, J., NunesdaCunha, C., & Arruda, R. (2013). More than light: Distance-dependent variation on riparian fern community in Southern Amazonia. Brazilian Journal of Botany, 36, 25–30. https://doi.org/10.1007/s40415-013-0003-8
Peck, D., Herlihy, A., Hill, B., et al. (2006). Environmental monitoring and assessment program-surface waters western pilot study: Field operations manual for wadeable streams, 1st edn. U.S. Environmental Protection Agency, Washington, D.C.
Pinto, A., Amaral, P., Souza-Jr C., et al. (2009). Diagnóstico Socioeconômico e Florestal do Município de Paragominas. Belém-PA.
Pott, V. J., Pott, A., (2000). Plantas Aquáticas do Pantanal, 1st edn. Embrapa Comunicação para Transferência de Tecnologia, Brasília
Pozzobom, U. M., Heino, J., da Brito, M. T., & S, Landeiro VL,. (2020). Untangling the determinants of macrophyte beta diversity in tropical floodplain lakes: insights from ecological uniqueness and species contributions. Aquatic Science. https://doi.org/10.1007/s00027-020-00730-2
Quinn, L. D., Schooler, S. S., & van Klinken, R. D. (2011). Effects of land use and environment on alien and native macrophytes: Lessons from a large-scale survey of Australian rivers. Diversity and Distributions, 17, 132–143. https://doi.org/10.1111/j.1472-4642.2010.00726.x
Quirino, B. A., Teixeira De Mello, F., Deosti, S., et al. (2021). Interactions between a planktivorous fish and planktonic microcrustaceans mediated by the biomass of aquatic macrophytes. Journal of Plankton Research, 43, 46–60. https://doi.org/10.1093/plankt/fbaa061
R Core Team (2020). R: A Language and Environment for Statistical Computing.
Riis, T., Kelly-Quinn, M., Aguiar, F. C., et al. (2020). Global overview of ecosystem services provided by riparian vegetation. BioScience, 70, 501–514. https://doi.org/10.1093/biosci/biaa041
Rocha, J. C., Peterson, G., Bodin, Ö., & Levin, S. (2018). Cascading regime shifts within and across scales. Science 1979, 362, 1379–1383. https://doi.org/10.1126/science.aat7850
Scheffer, M. (2004). The story of some shallow lakes. Ecology of shallow lakes (1st ed., pp. 1–19). Dordrecht: Springer.
Schneck, F., Bini, L. M., Melo, A. S., et al. (2022). Catchment scale deforestation increases the uniqueness of subtropical stream communities. Oecologia, 199, 671–683. https://doi.org/10.1007/s00442-022-05215-7
Sonter, L. J., Ali, S. H., & Watson, J. E. M. (2018). Mining and biodiversity: Key issues and research needs in conservation science. Proceedings of the Royal Society B: Biological Sciences, 285, 20181926. https://doi.org/10.1098/rspb.2018.1926
Thomaz, S. M. (2021). Ecosystem services provided by freshwater macrophytes. Hydrobiologia. https://doi.org/10.1007/s10750-021-04739-y
Vitousek, P., Mooney, H. A., Lubchenco, J., & Mellilo, J. M. (1997). Human domination of earth. Science 1979, 227, 494–499.
Wang, H., Zhang, M., Wang, C., et al. (2022). Spatial and Temporal Changes of landscape patterns and their effects on ecosystem services in the Huaihe River Basin China. Land (basel). https://doi.org/10.3390/land11040513
Acknowledgements
We are thankful to Hydro Paragominas Company for supporting the research projects “Monitoring Aquatic Biota of Streams on Areas of Paragominas Mining SA, Pará, Brazil” and “Effects of soil use on diversity and ecophysiology on the riparian vegetation, aquatic macrophytes and plankton in streams and lagoons in mining areas of Paragominas, Pará, Brazil” through the Biodiversity Research Consortium Brazil-Norway (BRC). This paper is number 51 in the publication series of the BRC. We are also grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (processes: 433125/2018-7) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 for financial support and scholarships. We thank the Aquatic Biota field team (A.L. Andrade, C. Maia, C. Paiva, G. Salvador, L. Calvão, N. Raiol, L. Juen, and T. Barbosa) for helping with field sampling.
Funding
This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (processes: 433125/2018-7), Coordination for the Improvement of Higher Education Personnel (CAPES—Financial Code 001) and Hydro through the Biodiversity Research Consortium Brazil-Norway (BRC).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bomfim, F.F., Fares, A.L.B., Melo, D.G.L. et al. Land use increases macrophytes beta diversity in Amazon streams by favoring amphibious life forms species. COMMUNITY ECOLOGY 24, 159–170 (2023). https://doi.org/10.1007/s42974-023-00139-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42974-023-00139-5