Skip to main content
Log in

Composition and phylogenetic structure of Pampean grasslands under distinct land use and presence of alien species

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Alien species can modify ecosystem functions and ecological processes in natural communities and potentially become invasive. In the Brazilian Pampean grasslands, reports of changes in land use and invasions of alien plant species are becoming more frequent. This study aimed to investigate species composition and phylogenetic relationships between native and alien plants across four sites of Brazilian Pampean grasslands under distinct land uses (NOM: no agricultural management; GRZ: grazed pastures; AGR: agrarian crops; ROAD: roadside). The phylogenetic relationship between native and alien species was analyzed at two scales: inter-site and intra-site. We found phylogenetic diversity dissimilarity across all sites considering all species. Overall, across all sites, we found random phylogenetic relationships among alien and native species. We found significant phylogenetic clustering in the most disturbed site (ROAD) for the two sets of species: all (alien and natives) and only native species. We conclude that clustering of phylogenetic relationships among alien and native species is only evident at small (intra-site) sampling scales in environments subject to high levels of disturbance (i.e., roadsides) in the studied Pampean Grasslands, suggesting that environmental filtering plays an important role in local community assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alpert, P., Bone, E., & Holzapfel, C. (2000). Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 52–66.

    Article  Google Scholar 

  • Altesor, A., Oesterheld, M., Leoni, E., Lezama, F., & Rodríguez, C. (2005). Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecology, 179, 83–91. https://doi.org/10.1007/s11258-004-5800-5

    Article  Google Scholar 

  • Andrade, B. O., Bonilha, C. L., Ferreira, P. M. A., Boldrini, I. I., & Overbeck, G. E. (2016). Highland grasslands at the Southern tip of the Atlantic Forest Biome: Management options and conservation challenges. Oecologia Australis, 20, 175–199. https://doi.org/10.4257/oeco.2016.2002.04

    Article  Google Scholar 

  • Baldissera, R., Fritz, L., Rauber, R., & Müller, S. C. (2010). Comparison between grassland communities with and without disturbances. Neotropical Biology and Conservation, 5, 3–9.

    Article  Google Scholar 

  • Baraloto, C., Hardy, O. J., Paine, C. E. T., Dexter, K. G., Cruaud, C., Dunning, L. T., Gonzalez, M. A., Molino, J. F., Sabatier, D., Savolainen, V., & Chave, J. (2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690–701. https://doi.org/10.1111/j.1365-2745.2012.01966.x

    Article  Google Scholar 

  • Barougy, R. F. E., Elgamal, I. A., Khedr, A. H. A., & Bersier, L. F. (2021). Contrasting alien effects on native diversity along biotic and abiotic gradients in an arid protected area. Scientific Reports, 11, 13557. https://doi.org/10.1038/s41598-021-92763-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartz, R., & Kowarik, I. (2019). Assessing the environmental impacts of invasive alien plants: A review of assessment approaches. NeoBiota, 43, 69–99. https://doi.org/10.3897/neobiota.43.30122

    Article  Google Scholar 

  • Bennett, J. A., Stotz, G. C., & Cahill, J. F., Jr. (2014). Patterns of phylogenetic diversity are linked to invasion impacts, not invasion resistance, in a native grassland. Journal of Vegetation Science, 25, 1315–1326.

    Article  Google Scholar 

  • Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O., & der Bank, V. (2015). Revisiting Darwin’s naturalization conundrum: Explaining invasion success of non-native trees and shrubs in southern Africa. Journal of Ecology, 103, 871–879. https://doi.org/10.1111/1365-2745.12410

    Article  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x

    Article  PubMed  Google Scholar 

  • Boldrini, I. L., Ferreira, P. M. A., Andrade, B. O., Schneider, A. A., Setúbal, R. B., Trevisan, R., & Freitas, E. M. (2010). Bioma Pampa: Diversidade florística e fisionômica. Pallotti, Porto Alegre.

  • Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R. Springer.

    Book  Google Scholar 

  • Braun-Blanquet, J. (1932). Plant sociology. The study of plant communities. McGraw-Hill Book Company.

    Google Scholar 

  • Brunbjerg, A. K., Borchsenius, F., Eiserhardt, W. L., Ejrnæs, R., & Svenning, J. C. (2012). Disturbance drives phylogenetic community structure in coastal dune vegetation. Journal of Vegetation Science, 23, 1082–1094. https://doi.org/10.1111/j.1654-1103.2012.01433.x

    Article  Google Scholar 

  • Callaway, R. M., & Aschehoug, E. T. (2000). Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science, 290, 521–523.

    Article  CAS  PubMed  Google Scholar 

  • Carreño-Rocabado, G., Peña-Claros, M., Bongers, F., Alarcón, A., Licona, J. C., & Poorter, L. (2012). Effects of disturbance intensity on species and functional diversity in a tropical forest. Journal of Ecology, 100, 1453–1463.

    Article  Google Scholar 

  • Catford, J. A., Daehler, C. C., Murphy, H. T., Sheppard, A. W., Hardesty, B. D., Westcott, D. A., & Rejmánek, M. (2012). The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Perspectives in Plant Ecology, Evolution and Systematics, 14, 231–241.

    Article  Google Scholar 

  • Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x

    Article  PubMed  Google Scholar 

  • Christen, D. C., & Matlack, G. R. (2009). The habitat and conduit functions of roads in the spread of three invasive plant species. Biological Invasions, 11, 453–465.

    Article  Google Scholar 

  • Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, 18, 117–143.

    Article  Google Scholar 

  • Cousins, S. A. O. (2006). Plant species richness in midfield islets and road verges: The effect of landscape fragmentation. Biodiversity and Conservation, 127, 500–509.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray.

    Book  Google Scholar 

  • Deák, B., Rádai, Z., Lukács, K., Kelemen, A., Kiss, K., Bátori, Z., & Kiss, P. J. (2020). Fragmented dry grasslands preserve unique components of plant species and phylogenetic diversity in agricultural landscapes. Biodiversity and Conservation, 29, 4091–4110.

    Article  Google Scholar 

  • Diniz, E. S., Gastauer, M., Thiele, J., & Meira-Neto, J. A. A. A. (2021). Phylogenetic dynamics of tropical Atlantic forests. Evolutionary Ecology, 35, 65–81. https://doi.org/10.1007/s10682-020-10094-6

    Article  Google Scholar 

  • DiTomaso, J. M. (2000). Invasive weeds in rangelands: Species, impacts, and management. Weed Science, 48, 255–265.

    Article  CAS  Google Scholar 

  • Dray, S., & Dufour, A. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20.

    Article  Google Scholar 

  • Fonseca, C. R., Guadagnin, D. L., Emer, C., Masciadri, S., Germain, P., & Zalba, S. M. (2013). Invasive alien plants in the Pampas grasslands: A tri-national cooperation challenge. Biological Invasions, 15, 1751–1763.

    Article  Google Scholar 

  • Forthofer, R., Lee, E., & Hernandez, M. (2006). Biostatistics: A guide to design, analysis and discovery (2nd ed.). Academic Press.

    Google Scholar 

  • Gerhold, P., Pärtel, M., Tackenberg, O., Hennekens, S. M., Bartish, I., Schaminée, J. H. J., Fergus, A. J. F., Ozinga, W. A., & Prinzing, A. (2011). Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives. American Naturalist, 177, 668–680. https://doi.org/10.1086/659059

    Article  PubMed  Google Scholar 

  • Ghazoul, J. (2004). Alien abduction: Disruption of native plant–pollinator interactions by invasive species. Biotropica, 36, 156–164.

    Google Scholar 

  • Ghersa, C., Roush, M. L., Radosevich, S. R., & Cordray, S. M. (1994). Co-evolution of agroecosystems and weed management. BioScience, 44, 85–94.

    Article  Google Scholar 

  • Godoy, O., Kraft, N. J. B., & Levine, J. (2014). Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters, 17, 836–844. https://doi.org/10.1111/ele.12289

    Article  PubMed  Google Scholar 

  • Gordon, D. R. (1998). Effects of invasive, non-indegenous plant species on ecosystem processes: Lessons from Florida. Ecological Applications, 8, 975–989.

    Article  Google Scholar 

  • Gotelli, N. J., & Entsminger, G. L. (2003). Swap algorithms in null model analysis. Ecology, 84, 532–535.

    Article  Google Scholar 

  • Grime, J. P. (2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, 17, 255–260. https://doi.org/10.1111/j.1654-1103.2006.tb02444.x

    Article  Google Scholar 

  • Guerin, G., Martín-Forés, I., Munroe, S. M., Sparrow, B., & Lowe, A. J. (2019). Alien plants alter the growth form ratio and structure of Australian grasslands. Applied Vegetation Science, 22, 582–592.

    Article  Google Scholar 

  • Hobbs, R. J., & Huenneke, L. F. (1992). Disturbance, diversity, and invasion: Implications for conservation. Conservation Biology, 6, 324–337.

    Article  Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press.

    Google Scholar 

  • James, J. J. (2008). Leaf nitrogen productivity as a mechanism driving the success of invasive annual grasses under low and high nitrogen supply. Journal of Arid Environments, 72, 1775–1784.

    Article  Google Scholar 

  • Jin, Y., & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353–1359. https://doi.org/10.1111/ecog.04434

    Article  Google Scholar 

  • Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166

    Article  CAS  PubMed  Google Scholar 

  • Kembel, S. W., & Hubbell, S. P. (2006). The phylogenetic structure of a neotropical forest tree community. Ecology, 87, 86–99. https://doi.org/10.1890/0012-9658(2006)87[86:TPSOAN]2.0.CO;2

    Article  Google Scholar 

  • Kraft, N. J. B., Cornwell, W. K., Webb, C. O., & Ackerly, D. D. (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. American Naturalist, 170, 271–283. https://doi.org/10.1086/519400

    Article  PubMed  Google Scholar 

  • Lankau, R. A. (2012). Coevolution between invasive and native plants driven by chemical competition and soil biota. PNAS, 10, 1124011245.

    Google Scholar 

  • Lapiedra, O., Sol, D., Traveset, A., & Vilà, M. (2015). Random processes and phylogenetic loss caused by plant invasions. Global Ecology and Biogeography. https://doi.org/10.1111/geb.12310

    Article  Google Scholar 

  • Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280. https://doi.org/10.1007/s004420100716

    Article  PubMed  Google Scholar 

  • Leffler, A. J., James, J. J., & Monaco, T. A. (2013). Temperature and functional traits influence differences in nitrogen uptake capacity between native and invasive grasses. Oecologia, 171, 51–60.

    Article  PubMed  Google Scholar 

  • Leger, E. A., & Espeland, L. E. (2010). Coevolution between native and invasive plant competitors: Implications for invasive species management. Evolutionary Applications, 3, 169–178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leibold, M. A., Economo, E. P., & Peres-Neto, P. (2010). Metacommunity phylogenetics: Separating the roles of environmental filters and historical biogeography. Ecology Letters, 13, 1290–1299.

    Article  PubMed  Google Scholar 

  • Levine, J., Adler, P. B., & Yelenik, S. G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975–989.

    Article  Google Scholar 

  • Li, Y., & Shen, Z. (2020). Roles of dispersal limit and environmental filtering in shaping the spatiotemporal patterns of invasive alien plant diversity in China. Frontier in Ecology and Evolution, 8, 544670.

    Article  Google Scholar 

  • Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., & Fang, C. (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytologist, 177, 706–714.

    Article  CAS  PubMed  Google Scholar 

  • Liendo, D., Biurrun, I., Campos, J., García-Mijangos, I., & Pearman, P. B. (2021). Effects of disturbance and alien plants on the phylogenetic structure of riverine communities. Journal of Vegetation Science, 32, e12933. https://doi.org/10.1111/jvs.12933

    Article  Google Scholar 

  • Lisboa, C. A. V., de Medeiros, R. B., de Azevedo, E. B., Patino, H. O., Carlotto, S. B., & Garcia, R. P. A. (2009). Poder germinativo de sementes de capim-annoni-2 (Eragrostis plana ness) recuperadas em fezes de bovinos. Revista Brasileira De Zootecnia, 38, 405–410.

    Article  Google Scholar 

  • Lishawa, S. C., Lawrence, B. A., Albert, D. A., Larkin, D. J., & Tuchman, N. C. (2019). Invasive species removal increases species and phylogenetic diversity of wetland plant communities. Ecology and Evolution, 9, 6231–6244.

    PubMed  PubMed Central  Google Scholar 

  • Loioloa, P. P., Bello, F., Chytrý, M., Götzenberger, L., Carmona, C. P., Pyšek, P., & Lososová, Z. (2018). Invaders among locals: Alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. Journal of Ecology, 106, 2230–2241. https://doi.org/10.1111/1365-2745.12986

    Article  Google Scholar 

  • Lopezaraiza-Mikel, M. E., Hayes, R. B., Whalley, M. R., & Memmott, J. (2007). The impact of an alien plant on a native plant-pollinator network: An experimental approach. Ecology Letters, 10, 539–550.

    Article  PubMed  Google Scholar 

  • Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x

    Article  PubMed  Google Scholar 

  • Lososová, Z., de Bello, F., Chytrý, M., Kühn, I., Pyšek, P., Sádlo, J., Winter, M., & Zelený, D. (2015). Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Global Ecology and Biogeography, 24, 786–794. https://doi.org/10.1111/geb.12317

    Article  Google Scholar 

  • Lunt, I. D. (1990). The soil seed bank of a long-grazed Themeda triandra grassland in Victoria. Proceedings of the Royal Society of Victoria, 102, 53–57.

    Google Scholar 

  • Mack, R. N., et al. (1989). Temperate grasslands vulnerable to plant invasions: Characteristics and consequences. In J. A. Drake, H. A. Mooney, F. diCastri, R. H. Groves, F. J. Kruger, & M. Rejmânek (Eds.), Biological invasions: A global perspective (pp. 155–179). Wiley.

    Google Scholar 

  • Martín-Forés, I., Castro, I., Acosta-Gallo, B., del Pozo, A., Sánchez-Jardón, L., & de Miguel, J. M. (2016). Alien plant species coexist over time with native ones in Chilean Mediterranean grasslands. Journal of Plant Ecology, 9, 682–691.

    Article  Google Scholar 

  • Martin-Fores, I., Acosta-Gallo, B., Castro, I., de Miguel, J. M., Del Pozo, A., & Casado, M. A. (2018). The invasiveness of Hypochaeris glabra (Asteraceae): Responses in morphological and reproductive traits for exotic populations. PLoS ONE, 13, e0198849.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin-Fores, I., Casado González, M. A., Castro Parga, I., Pozo Lira, A. D., Molina-Montnegro, M. A., Miguel Garcinuño, J. M. D., & Acosta Gallo, B. (2018b). Variation in phenology and overall performance traits can help to explain the plant invasion process amongst Mediterranean ecosystems. NeoBiota, 41, 67–89. https://doi.org/10.3897/neobiota.41.29965

    Article  Google Scholar 

  • Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085–1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x

    Article  PubMed  Google Scholar 

  • Meunier, G., & Lavoie, C. (2012). Roads as corridors for invasive plant species: New evidence from smooth bedstraw (Galium mollugo). Invasive. Plant Science and Management, 5, 92–100.

    Google Scholar 

  • Mi, X., Swenson, N. G., Rao, Q. J. M., Feng, G., Ren, H., & Bebber, D. P. (2016). Stochastic assembly in a subtropical forest chronosequence: Evidence from contrasting changes of species, phylogenetic and functional dissimilarity over succession. Scientific Reports, 6, 1–10.

    Article  Google Scholar 

  • Morgan, J. W. (1998). Patterns of invasion of an urban remnant of a species-rich grassland in southeastern Australia by non-native plant species. Journal of Vegetation Science, 9, 181–190.

    Article  Google Scholar 

  • Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3, 743–756. https://doi.org/10.1111/j.2041-210X.2012.00196.x

    Article  Google Scholar 

  • Novotny, V., Basset, Y., Miller, S. E., Weiblen, G. D., Bremer, B., Cizek, L., & Drodz, P. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature, 416, 841–844.

    Article  CAS  PubMed  Google Scholar 

  • Occhipinti, A. (2013). Plant coevolution: Evidences and new challenges. Journal of Plant Interactions, 8, 188–196.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., & Legendre, P. (2018). vegan: Community Ecology Package. https://cran.r-project.org/package=vegan

  • Overbeck, G. E., Mülle, S. C., Fidelis, A., Pfadenhauer, J., Pillar, V. D., Blanco, C. C., & Boldrini, I. (2007). Brazil’s neglected biome: The South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics, 9, 101–116.

    Article  Google Scholar 

  • Park, D. S., & Potter, D. (2013). A test of Darwin’s naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors. Proceedings of the National Academy of Sciences (PNAS), 110, 17915–17920. https://doi.org/10.1111/j.1365-2435.2010.01739.x

    Article  CAS  Google Scholar 

  • Parmentier, I., Réjou-Méchain, M., Chave, J., Vleminckx, J., Thomas, D. W., Kenfack, D., Chuyong, G. B., & Hardy, O. J. (2014). Prevalence of phylogenetic clustering at multiple scales in an African rain forest tree community. Journal of Ecology, 102, 1008–1016. https://doi.org/10.1111/1365-2745.12254

    Article  Google Scholar 

  • Pauchard, A., & Alaback, P. B. (2004). Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conservation Biology, 18, 238–248.

    Article  Google Scholar 

  • Pavoine, S. (2016). A guide through a family of phylogenetic dissimilarity measures among sites. Oikos, 125, 1719–1732.

    Article  Google Scholar 

  • Pavoine, S. (2020). adiv: Analysis of Diversity. R package version 2.0. https://cran.r-project.org/package=adiv

  • Peters, H. A. (2003). Neighbour-regulated mortality: The influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757–765. https://doi.org/10.1046/j.1461-0248.2003.00492.x

    Article  Google Scholar 

  • Piggin, C. M. (1978). Flowering and seed production of Echium plantagineum L. Weed Research, 18, 83–87.

    Article  Google Scholar 

  • Pillar, V. P., Müller, S. C., Castilhos, Z. M. S., & Jacques, A. V. A. (2009). Campos Sulinos - conservação e uso sustentável da biodiversidade. Ministério do Meio Ambiente.

    Google Scholar 

  • Prinzing, A., Durka, W., Klotz, S., & Brandl, R. (2002). Which species become aliens? Evolutionary Ecology Research, 4, 385–405.

    Google Scholar 

  • Pyšek, P. (1998). Is there a taxonomic pattern to plant invasions? Oikos, 82, 282–294.

    Article  Google Scholar 

  • Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., & Schaffner, U. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725–1737.

    Article  PubMed Central  Google Scholar 

  • Pyšek, P., Blackburn, T. M., García-Berthou, E., Perglová, I., & Rabitsch, W. (2017). Displacement and local extinction of native and endemic species. In M. Vilà & P. E. Hulme (Eds.), Impact of biological invasions on ecosystem services (pp. 157–175). Springer.

    Chapter  Google Scholar 

  • Qian, H., & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233–239.

    Article  Google Scholar 

  • R Development Core Team. (2019). R: A language and environment for statistical computing. https://www.r-project.org/

  • Rao, C. R. (1995). A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Questiio, 19, 23–63.

    Google Scholar 

  • Rai, P. K., & Singh, J. S. (2020). Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators, 111, 106020. https://doi.org/10.1016/j.ecolind.2019.106020

    Article  Google Scholar 

  • Rejmánek, M., & Richardson, D. M. (2014). What attributes make some plant species more invasive? Ecology, 77, 1655–1661.

    Article  Google Scholar 

  • Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, D. F., & West, C. J. (2000). Naturalization and invasion of alien plants: Concepts and definitions. Diversity and Distributions, 6, 93–107.

    Article  Google Scholar 

  • Rolim, R. G., de Ferreira, P. M. A., Schneider, A. A., & Overbeck, G. E. (2015). How much do we know about distribution and ecology of naturalized and invasive alien plant species? Biological Invasions, 17, 1497–1518.

    Article  Google Scholar 

  • Rolland, J., Cadotte, J. D., Devictor, V., Lavergne, S., Mouquet, N., Pavoine, S., & Rodrigues, A. (2012). Using phylogenies in conservation: New perspectives. Biology Letters, 8, 692–694.

    Article  PubMed  Google Scholar 

  • Salisbury, A., Armitage, J., Bostock, H., Perry, J., Tatchell, M., & Thompson, K. (2015). Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species? Journal of Applied Ecology, 52, 1156–1164.

    Article  CAS  Google Scholar 

  • Schneider, A. A. (2007). A flora naturalizada no estado do Rio Grande do Sul, Brasil: Herbáceas subespontâneas. Biociências, 15, 257–268.

    Google Scholar 

  • Schneider, A. A., & Irgang, B. E. (2005). Florística e fitossociologia de vegetação viária no município de Não-Me-Toque, Rio Grande do Sul, Brasil. Iheringia Série Botânica, 60, 49–62.

    Google Scholar 

  • Setubal, R. B., & Boldrini, I. I. (2010). Floristic and characterization of grassland vegetationat a granitic hill in Southern Brazil. Brazilian Journal of Biosciences, 8, 85–111.

    Google Scholar 

  • Sharma, J. P., & Esler, K. (2008). Phenotypic plasticity among Echium plantagineum populations in different habitats of Western Cape, South Africa. South African Journal of Botany, 74, 746–749.

    Article  Google Scholar 

  • Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105, 302–314. https://doi.org/10.1002/ajb2.1019

    Article  PubMed  Google Scholar 

  • Soliveres, S., Torices, R., & Maestre, F. (2012). Environmental conditions and biotic interactions acting together promote phylogenetic randomness in semi-arid plant communities: New methods help to avoid misleading conclusions. Journal of Vegetation Science, 23, 822–836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., & Hallett, S. G. (2006). Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biology, 4, 727–731.

    Article  CAS  Google Scholar 

  • Strauss, S. Y., Webb, C. O., & Salamin, N. (2006). Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Sciences (PNAS), 103, 5841–5845.

    Article  CAS  Google Scholar 

  • Thuiller, W., Gallien, L., Boulangeat, I., de Bello, F., Münkemüller, T., Roquet, C., & Lavergne, S. (2010). Resolving Darwin’s naturalization conundrum: A quest for evidence. Diversity and Distributions, 16, 461–475. https://doi.org/10.1111/j.1472-4642.2010.00645.x

    Article  Google Scholar 

  • Tilman, D. (1997). Community invasibility, recruitment limitation, and grassland biodiversity. Ecology, 78, 81–92.

    Article  Google Scholar 

  • Tilman, D. (2004). Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America, 101, 10854–10861. https://doi.org/10.1073/pnas.0403458101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traveset, A., & Richardson, D. M. (2014). Mutualistic Interactions and Biological Invasions. Annual Review of Ecology, Evolution, and Systematics, 45, 89–113.

    Article  Google Scholar 

  • Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18–30.

    Article  Google Scholar 

  • Valiente-Banuet, A., & Verdú, M. (2007). Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters, 10, 1029–1036. https://doi.org/10.1111/j.1461-0248.2007.01100.x

    Article  PubMed  Google Scholar 

  • Venail, P., Gross, K., Oakley, T. H., Narwani, A., Allan, E., Flombaum, P., & Isbell, F. (2015). Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29, 615–626.

    Article  Google Scholar 

  • Verdú, M., & Pausas, J. G. (2007). Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 95, 1316–1323.

    Article  Google Scholar 

  • Verdú, M., Rey, P. J., Alcántara, J. M., Siles, G., & Valiente-Banuet, A. (2009). Phylogenetic signatures of facilitation and competition in successional communities. Journal of Ecology, 97, 1171–1180.

    Article  Google Scholar 

  • Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., & Pergl, J. (2011). Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702–708.

    Article  PubMed  Google Scholar 

  • Violle, C., Nemergut, D. R., Pu, Z., & Jiang, L. (2011). Phylogenetic limiting similarity and competitive exclusion. Ecology Letters, 14, 782–787.

    Article  PubMed  Google Scholar 

  • Webb, C. O., Ackerly, D. D., & Kembel, S. W. (2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098–2100. https://doi.org/10.1093/bioinformatics/btn358

    Article  CAS  PubMed  Google Scholar 

  • Webb, C. O., Ackerly, D. D., & Kembel, S. (2011). Software for the analysis of phylogenetic community structure and character evolution (with phylomatic and ecovolve), version 4.2, user’s manual. 39. http://phylodiversity.net/phylocom/phylocom_manual.pdf

  • Webb, C. O., Ackerly, D. D., Mcpeek, M., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505.

    Article  Google Scholar 

  • Zar, J. H. (2010). The normal distribution. In J. H. Zar (Ed.), Biostatistical analysis (5th ed., pp. 66–91). Prentice Hall.

    Google Scholar 

  • Zhang, J., Mayor, S. J., & He, F. (2014). Does disturbance regime change community assembly of angiosperm plant communities in the boreal forest? Journal of Plant Ecology, 7, 188–201. https://doi.org/10.1093/jpe/rtt068

    Article  Google Scholar 

  • Zhu, X., Weston, P. A., Skoneczny, D., Gopurenko, D., Meyer, L., Lepschi, B. J., & Callaway, R. M. (2017). Ecology and genetics affect relative invasion success of two Echium species in southern Australia. Scientific Reports, 7, 42792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge A. A. Schneider who determined the plant species and T.G. Santos who gave valuable insights for the preliminary statistical analyses. This research did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Écio Souza Diniz.

Ethics declarations

Competing interests

The authors declare no conflict of interest. The authors also declare that this research did not receive any specific funding.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Junior, N.D., Diniz, É.S. & Avila Jr, R.S. Composition and phylogenetic structure of Pampean grasslands under distinct land use and presence of alien species. COMMUNITY ECOLOGY 24, 73–86 (2023). https://doi.org/10.1007/s42974-023-00136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-023-00136-8

Keywords

Navigation