Skip to main content
Log in

Diversity and community structure of the agroecosystem avifauna in the Cauvery delta region, South India

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Farmland bird populations have declined globally raising concerns over habitat loss for a wide range of species. In this study, we explored the significance of agroecosystems for birds at different temporal and spatial scales along the Cauvery delta region, South India. Our results recorded a wide range of 102 species, with passerines and wetland birds dominating the landscapes. Among the guild types, omnivores and insectivores were the well-represented groups followed by carnivores, granivores, frugivores, and nectarivores. Species richness and diversity were recorded higher during winter which could be associated with the maturing phase of rice paddies in the agroecosystem. There were significant differences recorded in species diversity and richness between the cropping period and the non-cropping periods, thus recognizing the high potential of paddy ecosystems in biodiversity conservation. The results of the multivariate analysis revealed that the diversity of birds in the agroecosystem was more influenced by the woody vegetation cover, crop cover, and field size; however, bird abundance was related to farm activities, plantations, and herbaceous cover surrounding the agroecosystem. Fewer generalist species revealed an interesting pattern of taxonomic homogenization with monoculture cropping patterns that could influence the adaptability and functional traits of the other species. The results of the study highlight that both HNV and the non-HNV zones attract a rich diversity of birds and the conservation of this traditional agricultural belt would aid in the conservation of threatened species and biodiversity globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aazami, J., & Nafar, R. (2018). Contrasting changes in the abundance and diversity of Northern Iranian birds’ assemblages from 2011 to 2015. Journal of Asia-Pacific Biodiversity, 11(3), 334–339.

    Article  Google Scholar 

  • Ali, S. (2002). The book of Indian birds. Bombay Natural History Society.

    Book  Google Scholar 

  • Anderle, M., Paniccia, C., Brambilla, M., Hilpold, A., Volani, S., Tasser, E., Seeber, J., & Tappeiner, U. (2022). The contribution of landscape features, climate, and topography in shaping taxonomical and functional diversity of avian communities in a heterogeneous Alpine region. Oecologia. https://doi.org/10.1007/s00442-022-05134-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen, E., Baldock, D., Bennett, H., Beaufoy, G., Bignal, E., Brouwer, F., Elbersen, B., Eiden, G., Godeschalk, F., Jones, G., McCracken, D., Nieuwenhuizen, W., van Eupen, M., Hennekens, S., & Zervas, G. (2003). Developing a high nature value farming area indicator. Internal report for the European Environment Agency. IEEP.

    Google Scholar 

  • Anderson, S. H., Kelly, D., Ladley, J. J., Molloy, S., & Terry, J. (2011). Cascading effects of bird functional extinction reduce pollination and plant density. Science, 331, 1068–1071.

    Article  PubMed  CAS  Google Scholar 

  • Arya, S. K., & Gopi, G. V. (2021). Influence of season and habitat on birds in a mid-altitudinal village ecosystem of Kailash Sacred Landscape-India. Environmental Challenges, 5, 100317.

    Article  Google Scholar 

  • Asokan, S., & Ali, A. M. S. (2010). Foraging behavior of selected insectivorous birds in Cauvery delta region of Nagapattinam district, Tamil Nadu, India. Journal of Threatened Taxa, 2(2), 690–694.

    Article  Google Scholar 

  • Bain, G. C., MacDonald, M. A., Hamer, R., Gardiner, R., Johnson, C. N., & Jones, M. E. (2020). Changing bird communities of an agricultural landscape, declines in arboreal foragers, increases in large species. Royal Society Open Science, 7, 200076.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker, B. P., Green, T. A., & Loker, A. J. (2020). Biological control and integrated pest management in organic and conventional systems. Biological Control, 140, 104095.

    Article  Google Scholar 

  • Batary, P., Kovacs-Hostyanszki, A., Fischer, C., Tscharntke, T., & Holzschuh, A. (2012). Contrasting effect of isolation of hedges from forests on farmland vs. woodland birds. Community Ecology, 3, 155–161.

    Article  Google Scholar 

  • BirdLife International. (2004). State of the world’s birds 2004: Indicators for our changing world. BirdLife International.

    Google Scholar 

  • Birkhofer, K., Rusch, A., Andersson, G. K. S., Bommarco, R., Dänhardt, J., Ekbom, B., Jönsson, A., Lindborg, R., Olsson, O., Rader, R., Stjernman, M., Williams, A., Hedlund, K., & Smith, H. G. (2018). A framework to identify indicator species for ecosystem services in agricultural landscapes. Ecological Indicators, 91, 278–286.

    Article  Google Scholar 

  • Bowler, D. E., Heldbjerg, H., Fox, A. D., de Jong, M., & Bohning-Gaese, K. (2019). Long term declines of European insectivorous bird populations and potential causes. Conservation Biology, 33, 1120–1130.

    Article  PubMed  Google Scholar 

  • Brennan, L. A., & Kuvlesky, W. P. (2005). North American grassland birds, an unfolding conservation crisis? The Journal of Wildlife Management, 69, 1–13.

    Article  Google Scholar 

  • Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L. G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L. A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D. S., Kennedy, C. M., Kleijn, D., Kremen, C., Landis, D. A., Letourneau, D. K., … Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 5(10), eaax0121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Debinski, D. M., Ray, C., & Saveraid, E. H. (2001). Species diversity and the scale of the landscape mosaic, do scales of movement and patch size affect diversity? Biological Conservation, 98, 179–190.

    Article  Google Scholar 

  • Donald, P. F., Green, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society b: Biological Sciences, 268, 25–29.

    Article  Google Scholar 

  • Donald, P. F., Sanderson, F. J., Burfeld, I. J., & van Bommel, F. P. J. (2006). Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agriculture, Ecosystems & Environment, 116(3–4), 189–196.

    Article  Google Scholar 

  • Elsen, P. R., Kalyanaraman, R., Ramesh, K., & Wilcove, D. S. (2016). The importance of agricultural lands for Himalayan birds in winter. Conservation Biology, 31, 416–426.

    Article  PubMed  Google Scholar 

  • Endenburg, S., Mitchell, G. W., Kirby, P., Fahrig, L., Pasher, J., & Wilson, S. (2019). The homogenizing influence of agriculture on forest bird communities at landscape scales. Landscape Ecology, 34, 2385–2399.

    Article  Google Scholar 

  • Eriksson, O. (2021). The importance of traditional agricultural landscapes for preventing species extinctions. Biodiversity Conservation, 30, 1341–1357.

    Article  Google Scholar 

  • Everard, M., Kangabam, R., Tiwari, M. K., McInnes, R., Kumar, R., Talukdar, G. H., Dixon, H., Joshi, P., Allan, R., Joshi, D., & Das, L. (2019). Ecosystem service assessment of selected wetlands of Kolkata and the Indian Gangetic Delta: Multi-beneficial systems under differentiated management stress. Wetlands Ecology and Management, 27, 405–426.

    Article  Google Scholar 

  • Ford, H. A., Barrett, G. W., Saunders, D. A., & Recher, H. F. (2001). Why have birds in the woodlands of southern Australia declined? Biological Conservation, 97(1), 71–88.

    Article  Google Scholar 

  • Frei, B., Renard, D., Mitchell, M. G. E., Seufert, V., Chaplin-Kramer, R., Rhemtulla, J. M., & Bennett, E. M. (2018). Bright spots in agricultural landscapes: Identifying areas exceeding expectations for multifunctionality and biodiversity. Journal of Applied Ecology, 55, 2731–2743.

    Article  Google Scholar 

  • Frenzel, M., Everaars, J., & Schweiger, O. (2016). Bird communities in agricultural landscapes, What are the current drivers of temporal trends? Ecological Indicators, 65, 113–121.

    Article  Google Scholar 

  • Gates, J. E., & Gysel, L. W. (1978). Avian nest dispersion and fledgling success in field-forest ecotones. Ecology, 59, 871–883.

    Article  Google Scholar 

  • Gil-Tena, A., Nabucet, J., Mony, C., Abadie, J., Saura, S., Butet, A., Burel, F., & Ernoult, A. (2014). Woodland bird response to landscape connectivity in an agriculture-dominated landscape: A functional community approach. Community Ecology, 15, 256–268.

    Article  Google Scholar 

  • Grab, H., Branstetter, M. G., Amon, N., Urban-Mead, K. R., Park, M. G., Gibbs, J., Blitzer, E. J., Poveda, K., Loeb, G., & Danforth, B. N. (2019). Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science, 363, 282–284.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, R. D., van Strien, A., Vorisek, P., Gmelig, M. A. W., Noble, D. G., Foppen, R. P. B., & Gibbons, D. W. (2005). Developing indicators for European birds. Philosophical Transactions of the Royal Society B Biological Sciences, 360(1454), 269–288.

    Article  PubMed Central  Google Scholar 

  • Grimmett, R., & Inskipp, T. (2005). Birds of Southern India. New Delhi: Helm Field Guides.

    Google Scholar 

  • Hadjikyriakou, T. G., Rogers, J. B., & Kirschel, A. N. G. (2022). Protecting a heterogeneous landscape supports avian diversity across seasons on a Mediterranean island. Journal of Ornithology. https://doi.org/10.1007/s10336-021-01953-2

    Article  Google Scholar 

  • Haggar, J., Pons, D., Saenz, L., & Vides, M. (2019). Contribution of agroforestry systems to sustaining biodiversity in fragmented forest landscapes. Agriculture, Ecosystems & Environment, 283, 106567.

    Article  Google Scholar 

  • Hallmann, C. A., Foppen, R. P. B., van Turnhout, C. A. M., de Kroon, H., & Jongejans, E. (2014). Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 511, 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Hossain, A., & Aditya, G. (2014). Avian diversity in agricultural landscape: Records from Burdwan, West Bengal, India. Proceedings of the Zoological Society, 69(1), 38–51.

    Article  Google Scholar 

  • Jayasimhan, C. S., & Pramod, P. (2019). Diversity and temporal variaton of the bird community in paddy felds of Kadhiramangalam, Tamil Nadu, India. Journal of Threatened Taxa, 11(10), 14279–14291.

    Article  Google Scholar 

  • Jungandreas, A., Roilo, S., Strauch, M., Václavík, T., Volk, M., & Cord, A. F. (2022). Response of endangered bird species to land-use changes in an agricultural landscape in Germany. Regional Environmental Change, 22, 19.

    Article  Google Scholar 

  • Kaiser, L. (1983). Unbiased estimation in line-intercept sampling. Biometrics, 39, 965–976.

    Article  Google Scholar 

  • Kamp, J., Frank, C., Trautmann, S., Busch, M., Droschmeister, R., Flade, M., Gerlach, B., Karthauser, J., Kunz, F., Mitschke, A., Schwarz, J., & Sudfeldt, C. (2021). Population trends of common breeding birds in Germany 1990–2018. Journal of Ornithology, 162, 1–15.

    Article  Google Scholar 

  • Katuwal, H. B., Rai, J., Tomlinson, K., Rimal, B., Sharma, H. P., Baral, H. S., Hughes, A. C., & Quan, R. (2022). Seasonal variation and crop diversity shape the composition of bird communities in agricultural landscapes in Nepal. Agriculture Ecosystems & Environment, 333, 107973.

    Article  Google Scholar 

  • Kittur, S., & Sundar, K. S. G. (2020). Density, flock size and habitat preference of Woolly-necked Storks Ciconia episcopus in agricultural landscapes of south Asia. SIS Conservation, 2, 71–79.

    Google Scholar 

  • Koju, R., Maharjan, B., Gosai, K. R., Kittur, S., & Sundar, K. S. G. (2019). Ciconiiformes nesting on trees in cereal-dominated farmlands: Importance of scattered trees for heronries in lowland Nepal. Waterbirds, 42(4), 355–365.

    Article  Google Scholar 

  • Kok, A., de Olde, E. M., de Boer, I. J. M., & Ripoll-Bosch, R. (2020). European biodiversity assessments in livestock science, A review of research characteristics and indicators. Ecological Indicators, 112, 105902.

    Article  Google Scholar 

  • Kruger, H., Vaananen, V. M., Holopainen, S., & Nummi, P. (2018). The new faces of nest predation in agricultural landscapes—a wildlife camera survey with artificial nests. European Journal of Wildlife Research, 64, 76.

    Article  Google Scholar 

  • Lee, M.-B., & Martin, J. A. (2017). Avian species and functional diversity in agricultural landscapes, Does landscape heterogeneity matter? PLoS ONE, 12(1), e0170540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Hou, X., Song, Y., Shan, K., Zhu, S., Yu, X., & Mo, X. (2019). Assessing changes of habitat quality for shorebirds in stopover sites: A case study in Yellow River Delta, China. Wetlands, 39, 67–77.

    Article  Google Scholar 

  • Liao, J., Liao, T., He, X., Zhang, T., Li, D., Luo, X., Wu, Y., & Ran, J. (2020). The effects of agricultural landscape composition and heterogeneity on bird diversity and community structure in the Chengdu Plain, China. Global Ecology and Conservation, 24, e01191.

    Article  Google Scholar 

  • Makelainen, S., Harlio, A., Heikkinen, R. K., Herzon, I., Kuussaari, M., Lepikko, K., Maier, A., Seimola, T., Tiainen, J., & Arponen, A. (2019). Coincidence of high nature value farmlands with bird and butterfly diversity. Agriculture, Ecosystems & Environment, 269, 224–233.

    Article  Google Scholar 

  • Martin, A. E., Collins, S. J., Crowe, S., Girard, J., Naujokaitis-Lewis, I., Smith, A. C., Lindsay, K., Mitchell, S., & Fahrig, L. (2020). Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agriculture, Ecosystems & Environment, 288, 106698.

    Article  Google Scholar 

  • Martin, T. G., McIntyre, S., Catterall, C. P., & Possingham, H. P. (2006). Is landscape context important for riparian conservation? Birds in grassy woodland. Biological Conservation, 127(2), 201–214.

    Article  Google Scholar 

  • Martinez-Sastre, R., Garcia, D., Minarro, M., & Martin-Lopez, B. (2020). Farmers’ perceptions and knowledge of natural enemies as providers of biological control in cider apple orchards. Journal of Environmental Management, 266, 110589.

    Article  PubMed  Google Scholar 

  • Martinez-Vilalta, J., Bertolero, A., Bigas, D., Paquet, J.-Y., & Martínez-Vilalta, A. (2002). Habitat selection of passerine birds nesting in the Ebro delta reedbeds (NE Spain): Management implications. Wetlands, 22(2), 318–325.

    Article  Google Scholar 

  • Mason, L. R., Green, R. E., Howard, C., Stephens, P. A., Willis, S. G., Aunins, A., Brotons, L., Chodkiewicz, T., Chylarecki, P., Escandell, V., & Foppen, R. P. (2019). Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Climatic Change, 157, 337–354.

    Article  Google Scholar 

  • Michalczuk, J. (2020). The importance of non-forest tree stand features for protection of the Syrian Woodpecker Dendrocopos syriacus in agricultural landscape: A case study from South-Eastern Poland. Agroforestry Systems, 94, 1825–1835.

    Article  Google Scholar 

  • Morkune, R., Gasiunaite, Z. R., Zukovskis, J., Marcinkeviciute, L., & Razinkovas-Baziukas, A. (2022). Ecosystem services in the Nemunas delta: Differences in perceptions of farmers, birdwatchers and scientists. Environmental Management, 69, 801–814.

    Article  PubMed  Google Scholar 

  • Munoz-Saez, A., Perez-Quezada, J. F., & Estades, C. F. (2017). Agricultural landscapes as habitat for birds in central Chile. Revista Chilena De Historia Natural, 90, 3.

    Article  Google Scholar 

  • Pardini, R., Faria, D., Accacio, G. M., Laps, R. R., Mariano-Neto, E., Paciencia, M. L. B., Dixo, M., & Baumgarten, J. (2009). The challenge of maintaining Atlantic forest biodiversity, A multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biological Conservation, 142, 1178–1190.

    Article  Google Scholar 

  • Peet, R. K. (1974). The measurement of species diversity. Annual review of ecology and systematics. Annual Reviews, 5, 285–307.

    Google Scholar 

  • Perkins, A. J., Maggs, H. E., Watson, A., & Wilson, J. D. (2011). Adaptive management and targeting of agri-environment schemes does benefit biodiversity, a case study of the corn bunting Emberiza calandra. Journal of Applied Ecology, 48, 514–522.

    Article  Google Scholar 

  • Pielou, E. C. (1966). Shannon’s formula as a measure of specific diversity: Its use and misuse. The American Naturalist, 100, 463–465.

    Article  Google Scholar 

  • Pustkowiak, S., Kwiecinski, Z., Lenda, M., Zmihorski, M., Rosin, Z. M., Tryjanowski, P., & Skorka, P. (2021). Small things are important, the value of singular point elements for birds in agricultural landscapes. Biological Reviews, 96(4), 1386–1403.

    Article  PubMed  Google Scholar 

  • Radzeviciute, R., Theodorou, P., Schlegel, M., & Paxton, R. J. (2021). A two-part modelling approach reveals a positive effect of pollinator biodiversity in boosting the pollination of apple flowers. Agriculture, Ecosystems & Environment, 306, 107197.

    Article  Google Scholar 

  • Ralph, C. J., Droege, S., & Sauer J. R. (1995). Managing and monitoring birds using point counts: Standards and applications. In C. J. Ralph, J. R. Sauer, & S. Droege (Eds.), Monitoring bird populations by point counts. USDA Forest Service General Technical Report PSW-GTR-149 (pp. 161–175).

  • Ralph, C. J., Geupel, G. R., Pyle, P., Martin, T., Desante, D. F., & Mila, B. (1996). Manual de Metodos de Campo para el Monitoreo de Aves Terres-tres (p. 46). Department of Agriculture, Forest Service, Pacific Southwest Research Station.

    Google Scholar 

  • Recher, H., Holmes, R., Schultz, M., Shields, J., & Kavanagh, R. (1985). Foraging patterns of feeding birds in eucalypt forest and woodland of southeastern Australia. Austral Ecology, 10, 399–419.

    Article  Google Scholar 

  • Salek, M., Brlík, V., Kadava, L., Praus, L., Studecky, J., Vrana, J., & Gamero, A. (2020). Year-round relevance of manure heaps and its conservation potential for declining farmland birds in agricultural landscape. Agriculture, Ecosystems & Environment, 301, 107032.

    Article  Google Scholar 

  • Sanz-Perez, A., Sollmann, R., Sarda-Palomera, F., Bota, G., & Giralt, D. (2020). The role of detectability on bird population trend estimates in an open farmland landscape. Biodiversity Conservation, 29, 1747–1765.

    Article  Google Scholar 

  • Semwal, R. L., Nautiyal, S., Sen, K. K., Rana, U., Maikhuri, R. K., Rao, K. S., & Saxina, K. G. (2004). Patterns and ecological implications of agricultural land-use changes, a case study from central Himalaya, India. Agriculture, Ecosystems & Environment, 102(1), 81–92.

    Article  Google Scholar 

  • Smith, H. G. (2018). Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biological Conservation, 218, 247–253.

    Article  Google Scholar 

  • Soderstrom, B., Kiema, S., & Reid, R. S. (2003). Intensified agricultural land-use and bird conservation in Burkina Faso. Agriculture, Ecosystems & Environment, 99(1–3), 113–124.

    Article  Google Scholar 

  • Sohil, A., & Sharma, N. (2020). Assessing the bird guild patterns in heterogeneous land use types around Jammu, Jammu and Kashmir, India. Ecological Processes, 9(1), 49.

    Article  Google Scholar 

  • Sundar, G., & Kittur, S. A. (2012). Methodological, temporal and spatial factors affecting modeled occupancy of resident birds in the perennially cultivated landscape of Uttar Pradesh, India. Landscape Ecology, 27, 59–71.

    Article  Google Scholar 

  • Sybertz, J., Matthies, S., Schaarschmidt, F., Reich, M., & von Haaren, C. (2020). Biodiversity modelling in practice—Predicting bird and woody plant species richness on farmlands. Ecosystem and People, 16(1), 19–34.

    Article  Google Scholar 

  • Tansley, A. G., & Chip, T. F. (1926). Aims and methods in the study of vegetation. Whitefriars Press.

    Google Scholar 

  • Traba, J., & Morales, M. B. (2019). The decline of farmland birds in Spain is strongly associated to the loss of fallow land. Scientific Reports, 9, 9473.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trautmann, S. (2018). Climate change impacts on bird species. In D. Tietze (Ed.), Bird species. Part of the fascinating life sciences book series (FLS) (pp. 217–234). Springer.

    Google Scholar 

  • Tu, H. M., Fan, M. W., & Chie-Jen Ko, J. (2020). Different habitat types affect bird richness and evenness. Scientific Reports, 10, 1221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulman, Y., Sharma, M., & Kumar, A. (2018). Agroforestry systems as habitat for avian species: Assessing its role in conservation. Proceedings of the Zoological Society., 71, 127–145.

    Article  Google Scholar 

  • Velasquez-Tibata, J., Salaman, P., & Graham, C. H. (2013). Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Regional Environmental Change, 13(2), 235–248.

    Article  Google Scholar 

  • Wheeler, M. E., Barzen, J. A., Crimmins, S. M., & Van Deelen, T. R. (2021). Population responses to harvest depend on harvest intensity, demographics, and mate replacement in sandhill cranes. Global Ecology and Conservation, 30, e01778.

    Article  Google Scholar 

  • Woodcock, B. A., Garratt, M. P., Powney, G. D., Shaw, R. F., Osborne, J. L., Soroka, J., Lindström, S. A., Stanley, D., Ouvrard, P., Edwards, M. E., & Jauker, F. (2019). Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications, 10, 1481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yahner, R. H. (1988). Changes in wildlife communities near edges. Conservation Biology, 2(4), 333–339.

    Article  Google Scholar 

Download references

Funding

The authors thank the University Grants Commission (UGC), Government of India, for the financial assistance and support for carrying out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjula Menon.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Consent for publication

The authors give the consent for publication of the work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, M., Mohanraj, R. Diversity and community structure of the agroecosystem avifauna in the Cauvery delta region, South India. COMMUNITY ECOLOGY 23, 365–376 (2022). https://doi.org/10.1007/s42974-022-00114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-022-00114-6

Keywords

Navigation