Skip to main content
Log in

Black Manakin (Xenopipo atronitens) as a keystone species for seed dispersal in a white-sand vegetation enclave in Southwest Amazonia

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Mutualistic interactions between plants and birds entail benefits for both organisms. While the birds obtain a nutritional resource when feeding on fruit, for example, the plant species benefits from having its seeds dispersed away from the mother-plant. Campinarana ecosystems grow on the white-sand substrates found irregularly within the Amazon basin. We conducted the present study in an enclave of campinarana in the municipality of Mâncio Lima, in the western extreme of the Brazilian state of Acre. We used mist-nets to capture birds, from which we also collected fecal samples. The seeds encountered in these samples were identified and used to establish a bird–plant interaction network, through which we analyzed the connectance, nestedness, centrality analysis, and robustness of the interactions. We recorded 69 of the 648 possible interactions, in which 12 bird species interacted with 54 plant taxa, with intermediate connectance (C = 10.65%) and non-significant nestedness (N = 11.36; p = 0.1). The bird–plant interaction network of the campinarana enclave sampled in the present study had a random robustness of Rr = 0.52 and robustness of the degree of connectivity of Rd = 0.15. Based on its centrality analysis and robustness, black manakin, Xenopipo atronitens, was the most central bird species, responsible for the maintenance of the stability and structure of the interaction network. Given these findings, and its disproportionate mutualistic interactions with the plant taxa, in comparison with the other local frugivorous bird species, we consider X. atronitens to be a keystone species in this white-sand vegetation ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeney, J. M., Christensen, N. L., Vicentini, A., & Cohn-Haft, M. (2016). White-sand Ecosystems in Amazonia. Biotropica, 48, 7–23. https://doi.org/10.1111/btp.12293

    Article  Google Scholar 

  • Alencar, L., & Guilherme, E. (2020). Bird-plant interactions on the edge of a forest fragment in southwestern Brazilian Amazonia. Acta Scientiarum. Biological Sciences, 42, e51485. https://doi.org/10.4025/actascibiolsci.v42i1.51485

    Article  Google Scholar 

  • Anderson, A. B. (1981). White-sand vegetation of Brazilian Amazonia. Biotropica, 13, 199–210. https://doi.org/10.2307/2388125

    Article  Google Scholar 

  • Ashton, P. J. (2010). The demise of the Nile crocodile (Crocodylus niloticus) as a keystone species for aquatic ecosystem conservation in South Africa: The case of the Olifants River. Aquatic Conservation: Marine and Freshwater Ecosystems, 20, 489–493. https://doi.org/10.1002/aqc.1132

    Article  Google Scholar 

  • Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitats. Oecologia, 96, 373–382. https://doi.org/10.1007/bf00317508

    Article  PubMed  Google Scholar 

  • Atmar, W., & Patterson, B. D. (1995). The nestedness temperature calculator: A visual basic program, including 294 presence-absence matrices. Bulletin of the Ecological Society of America. https://doi.org/10.2307/20168111

    Article  Google Scholar 

  • Baldiviezo, C. D. V., Passos, M. F. O., & Azevedo, C. S. (2019). Knowledge gaps regarding frugivorous ecological networks between birds and plants in Brazil. Pap. Avulsos Zool., 59, 5954.

    Article  Google Scholar 

  • Bascompte, J., & Jordano, P. (2014). Mutualistic networks (p. 206). Princeton University Press.

  • Bascompte, J., Jordano, P., Melián, J., & Olesen, J. M. (2003). The nested assembly of plant—animal mutualistic networks. PNAS, 100, 9383–9387. https://doi.org/10.1073/pnas.1633576100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastolla, U., Fortuna, M. A., Pascual-Garcia, A., Ferrera, A., Luque, B., & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018–1020. https://doi.org/10.1038/nature07950

    Article  CAS  PubMed  Google Scholar 

  • Bond, W. J. (1994). Keystone Species. In: E.-D. Schulze et al. (Eds.) Biodiversity and Ecosystem Function (pp. 237–253) Springer.

  • Borges, S. H. (2004). Species poor but distinct: Bird assemblages in white sand vegetation in Jaú National Park, Amazonian Brazil. Ibis, 146, 114–124. https://doi.org/10.1111/j.1474-919X.2004.00230.x

    Article  Google Scholar 

  • Borges, S. H., Cornelius, C., Moreira, M., Ribas, C. C., Cohn-Haft, M., Capurucho, J. M. G., Vargas, C., & Almeida, R. (2016). Bird communities in Amazonian white-sand vegetation patches: Effects of landscape structure and biogeographic context. Biotropica, 48, 121–131. https://doi.org/10.1111/btp.12296

    Article  Google Scholar 

  • Burgos, E., Ceva, H., Hernández, L., & Perazzo, R. P. J. (2009). Understanding and characterizing nestedness in mutualistic bipartite networks. Computer Physics Communications, 180, 532–535. https://doi.org/10.1016/j.cpc.2008.11.007

    Article  CAS  Google Scholar 

  • Capurucho, J. M. G., Cornelius, C., Borges, S. H., Cohn-haft, M., Aleixo, A., Metzger, J. P., & Ribas, C. C. (2013). Combining phylogeography and landscape genetics of Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene landscape evolution in Amazonia. Biological Journal of the Linnean Society, 110, 60–76. https://doi.org/10.1111/bij.12102

    Article  Google Scholar 

  • Carter, T. B. (2010). Sna: Tools for Social Network Analysis. R package version 2.2–0. http://CRAN.R-project.org/package=sna.

  • Colwell, R. K., Dunn, R. R., & Harris, N. C. (2012). Coextinction and persistence of dependent species in a changing world. Annual Review of Ecology, Evolution, and Systematics, 43, 183–203. https://doi.org/10.1146/annurev-ecolsys-110411-160304

    Article  Google Scholar 

  • Cottee-Jones, H. E. W., & Whittaker, R. J. (2012). The keystone species concept: A critical appraisal. Frontiers of Biogeography, 4, 117–127.

    Article  Google Scholar 

  • Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695. http://igraph.sf.net.

  • Daly, D., & Silveira, M. (2008). Primeiro catálogo da flora do Acre, Brasil / First catalogue of flora of Acre, Brazil. Rio Branco: EDUFAC.

  • Daly, D. C., Silveira, M., Medeiros, H., Castro, W., & Obermüller, F. A. (2016). The White-sand Vegetation of Acre, Brazil. Biotropica, 48, 81–89. https://doi.org/10.1111/btp.12307

    Article  Google Scholar 

  • Demarchi, J. C., Piroli, E. L., & Zimback, C. R. L. (2019). Estimativa de perda de solos por erosão na bacia hidrográfica do Ribeirão das Perobas (SP) nos anos 1962 e 2011. Raega- O Espaço Geográfico Em Análise, 46, 110–131.

    Article  Google Scholar 

  • Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7–24. https://doi.org/10.2174/1874213000902010007

    Article  Google Scholar 

  • Evans, D. M., Pocock, M. J. O., & Memmott, J. (2013). The robustness of a network of ecological networks to habitat loss. Ecology Letters, 16, 844–852. https://doi.org/10.1111/ele.12117

    Article  PubMed  Google Scholar 

  • Fadini, R. F., & Marco-Jr, P. D. (2004). Interações entre aves frugívoras e plantas em um fragmento de mata Atlântica de Minas Gerais. Ararajuba, 12, 97–103.

    Google Scholar 

  • Ferreira, L. V., Chaves, P. P., Cunha, D. C., Rosario, A. S., & Parolin, P. (2013). A extração ilegal de areia como causa do desaparecimento de campinas e campinarana no Estado do Pará, Brasil. Pesquisas Botânica, 64, 157–173.

    Google Scholar 

  • Fleming, T. H., Breitwisch, R. L., & Whitesides, G. H. (1987). Patterns of tropical vertebrate frugivore diversity. Annual Review of Ecology and Systematics, 18, 91–109.

    Article  Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks, conceptual clarification. Soc. Networks, 1, 215–239. https://doi.org/10.1016/0378-8733(78)90021-7

    Article  Google Scholar 

  • Gilbert, L. E. (1980). Food web organization and the conservation of neotropical diversity. In: Soulé e, M. E. & Wilcox, B. A. (eds.) Conservation biology: An evolutionary-ecological perspective (pp. 11–33). Sinauer.

  • Gouveia, C., Móréh, A., & Jordán, F. (2021). Combining centrality indices: Maximizing the 357 predictability of keystone species in food webs. Ecological Indicators, 126(2021), 107617. https://doi.org/10.1016/j.ecolind.2021.107617.

    Article  Google Scholar 

  • Guilherme, E., & Borges, S. (2011). Ornithological Records from a Campina/Campinarana Enclave on the Upper Juruá River, Acre, Brazil. The Wilson Ornithological Society, 123, 24–32. https://doi.org/10.1676/10-036.1

    Article  Google Scholar 

  • Guilherme, E., Marques, E. L., & Santos, G. S. (2018). Avifauna of a white-sand vegetation enclave in northwest Rondônia, Brazil: Relevant records, body mass and morphometrics. Bullettin B.O.C, 138, 286–306. https://doi.org/10.25226/bboc.v138i4.2018.a2.

  • Guimarães, P. R., Rico-Gray, V., Reis, S. F., & Thompson, J. N. (2006). Asymmetries in specialization in ant-plant mutualistic networks. Proceeding of the Royal Society of London, 273, 2041–2047. https://doi.org/10.1098/rspb.2006.3548

    Article  Google Scholar 

  • Hawes, J. E., & Peres, C. A. (2014). Fruit–frugivore interactions in Amazonian seasonally flooded and unflooded forests. Journal of Tropical Ecology, 30, 381–399. https://doi.org/10.1017/s0266467414000261

    Article  Google Scholar 

  • IBGE - Instituto Brasileiro de Geografia e Estatística. (2012). Manual Técnico da Vegetação brasileira. IBGE.

    Google Scholar 

  • Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: Connectance, dependence asymmetries, and coevolution. The American Naturalist, 129, 657–677. https://doi.org/10.1086/284665

    Article  Google Scholar 

  • Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters, 6, 69–81. https://doi.org/10.1046/j.1461-0248.2003.00403.x

    Article  Google Scholar 

  • Koh, L. P., Dunn, R. R., Sodhi, N. S., Colwell, R. K., Proctor, H. C., & Smith, V. S. (2004). Species Coextinctions and the Biodiversity Crisis. Science, 305, 1632–1634. https://doi.org/10.1126/science.1101101

    Article  CAS  PubMed  Google Scholar 

  • Landi, P., Minoarivelo, H. O., Brännström, A., Hui, C., & Dieckmann, U. (2018). Complexity and stability of ecological networks: A review of the theory. Population Ecology, 60, 319–345. https://doi.org/10.1007/s10144-018-0628-3

    Article  Google Scholar 

  • Lewinsohn, T. M., & Cagnolo, L. (2012). Keystones in a Tangled Bank. Science, 335, 1449–1450. https://doi.org/10.1126/science.1220138

    Article  CAS  PubMed  Google Scholar 

  • Lewinsohn, T. M., Loyola, R. D., & Prado, I. P. (2006). Matrizes, redes e ordenações: A detecção de estruturas em comunidades interativas. Oecologia Brasiliensis, 10, 90–104. https://doi.org/10.4257/oeco.2006.1001.06

    Article  Google Scholar 

  • Martín-González, A. M., Dalsgaard, B., Olesen, J. M., & Martín, A. M. (2010). Centrality measures and the importance of generalist species in pollination networks. Ecological Complexity, 7, 36–43. https://doi.org/10.1016/j.ecocom.2009.03.008

    Article  Google Scholar 

  • Medina, E., García, V., & Cuevas, E. (1990). Sclerophylly and oligotrophic environments: Relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the upper Río Negro region. Biotropica, 22, 51–64. https://doi.org/10.2307/2388719

    Article  Google Scholar 

  • Mello, M. A. R., Rodrigues, F. A., Costa, L. F., Kissling, W. D., Şekercio, Ç. H., Marquitti, F. M. D., & Kalko, E. K. V. (2014). Keystone species in seed dispersal networks are mainly determined by dietary specialization. Oikos, 124, 1031–1039. https://doi.org/10.1111/oik.01613

    Article  Google Scholar 

  • Mello, M. A. R., Muylaert, R. L., Pinheiro, R. B. P., & Ferreira, G. M. F. (2016). Guia Para Análise De Redes Ecológicas., 1, 113.

    Google Scholar 

  • Memmott, J., Waser, N. M., & Price, M. V. (2004). Tolerance of pollination networks to species extinctions. Proceeding of the Royal Society of London, 271, 2605–2611. https://doi.org/10.1098/rspb.2004.2909

    Article  Google Scholar 

  • Mills, L. S., Soulé, M. E., & Doak, D. F. (1993). The keystone-species concept in ecology and conservation. BioScience, 43, 219–224. https://doi.org/10.2307/1312122

    Article  Google Scholar 

  • Montoya-Arango, S., Acevedo-Quintero, J. F. & Parra, J. L. (2019). Abundance and size of birds determine the position of the species in plant-frugivore interaction networks in fragmented forests. Community Ecology, 20, 75–82. https://doi.org/10.1556/168.2019.20.1.8.

    Article  Google Scholar 

  • Morellato, L. P. C., & Leitão-Filho, H. F. (1992). Padrões de frutificação e dispersão na Serra do Japi. In: Morellato, L. P. C. (Ed.). História Natural da Serra do Japi: ecologia e preservação de uma área florestal no Sudeste do Brasil (pp.112–141). Editora da Unicamp/Fapesp. Campinas, SP.

  • Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. Cambridge Univ. Press.

  • Pacheco, J. F., Silveira, L. F., Aleixo, A., Agne, C. E., Bencke, G. A., Bravo, G. A., Brito, G. R. R., Cohn-Haft, M., Maurício, G. N., Naka, L. N., Olmos, F., Posso, S., Lees, A. C., Figueiredo, L. F. A., Carrano, E., Guedes, R. C., Cesari, E., Franz, I., Schunck, F., & Piacentini, V. Q. (2021). Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee. Ornithology Research, 29, 123. https://doi.org/10.1007/s43388-021-00058-x

    Article  Google Scholar 

  • Paine, R. T. (1969). A note on trophic complexity and community stability. The American Naturalist, 103, 91–93.

    Article  Google Scholar 

  • Paine, R. T. (1995). A conversation on refining the concept of keystone species. Conservation Biology, 9, 962–964.

    Article  Google Scholar 

  • Purificação, K. N., Pascottob, M. C., Pedronib, F., Mewsc, H. A., & Lima-Junior, D. P. (2020). Disentangling the architecture of the frugivorous bird-plant interaction networks in a savanna-forest mosaic in the Neotropical savana. Acta Oecologica, 107, 103601. https://doi.org/10.1016/j.actao.2020.103601

    Article  Google Scholar 

  • Rossetti, D. F., Moulatlet, G. M., Tuomisto, H., Gribel, R., Toledo, P. M., Valeriano, M., Ruokolainen, K., Cohen, M. C. L., Cordeiro, C. L. O., Rennó, C. D., Coelho, L. S., & Ferreira, C. A. C. (2019). White sand vegetation in an Amazonian lowland under the perspective of a young geological history. Anais Da Academia Brasileira De Ciências, 91, e20181337. https://doi.org/10.1590/0001-3765201920181337

    Article  PubMed  Google Scholar 

  • Schleuning, M., Ingmann, L., Straub, R., Fritz, S. A., Dalsgaard, B. D., Dehling, M., Plein, M., Saavedra, F., Sandel, B., Svenning, J. C., Gaese, K. B., & Dormann, C. F. (2014). Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecology Letters, 17, 454–463. https://doi.org/10.1111/ele.12245

    Article  PubMed  Google Scholar 

  • Schulenberg, T. S., Stotz, D. F., Lane, D. F., O’Neill, J. P., & Parker, T. A. (2007). Birds of Peru. University Press of Princeton.

    Google Scholar 

  • Symstad, A. J., Tilman, D., Willson, J., & Knops, J. M. H. (1998). Species loss and ecosystem functioning: Effects of species identity and composition. Oikos, 81, 389–397. https://doi.org/10.2307/3547058

    Article  Google Scholar 

  • Terborgh, J. (1986). Keystone plant resources in the tropical forest. In: Soulé, I., & Michael, E. (Eds). Conservation Biology (pp. 330–334). Sinauer, Sunderland.

  • Traveset, A., Tur, C., & Eguíluz, V. M. (2017). Plant survival and keystone pollinator species in stochastic coextinction models: Role of intrinsic dependence on animal-pollination. Science and Reports, 7, 6915. https://doi.org/10.1038/s41598-017-07037-7

    Article  CAS  Google Scholar 

  • Valiente-Banuet, A., Aizen, M. A., Alcántara, J. M., Arroyo, J., Cocucci, A., Galetti, M., Garcia, M. B., Garcia, D., Gomez, J. M., Jordano, P., Medel, R., Navarro, L., Obeso, J. R., Oviedo, R., Ramirez, R., Rey, P. J., Traveset, A. V., & M. and Zamora, R. (2015). Beyond species loss: The extinction of ecological interactions in a changing world. Functional Ecology, 29, 299–307. https://doi.org/10.1111/1365-2435.12356

    Article  Google Scholar 

  • Young, D. D. (1980). Keystones species concept. The American Biology Teacher, 42, 312–314. https://doi.org/10.2307/4446950

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Brazilian Coordination for Higher Education Personnel Training (CAPES) for a graduate stipend, UFAC and the Graduate Program in Ecology and the Management of Natural Resources, for supporting the present study. We would also like to thank the members of the UFAC Ornithology Laboratory for sharing knowledge and those of the UFAC Plant Ecology Laboratory for helping to identify the seeds collected in the field. Maíra Santos is grateful to the residents of the Santa Barbara community for their hospitality and respect during the months that she collected data on the PPBio trail.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maíra Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M., Alencar, L. & Guilherme, E. Black Manakin (Xenopipo atronitens) as a keystone species for seed dispersal in a white-sand vegetation enclave in Southwest Amazonia. COMMUNITY ECOLOGY 23, 55–62 (2022). https://doi.org/10.1007/s42974-021-00072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-021-00072-5

Keywords

Navigation