Skip to main content
Log in

Community structure and spatial distribution of understory birds in three bamboo-dominated forests in southwestern Amazonia

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

The ongoing deforestation in southwestern Brazilian Amazonia is transforming the region’s landscape into a mosaic of forest fragments. The bamboo forests are threatened by the fragmentation and replacement of natural habitats due to anthropogenic activities. The bird fauna found in forest fragments and habitats dominated by bamboo is under the constant threat of local extinction due to the increasing isolation of populations. In the present study, we compared the structure of the understory bird communities (a) between an urban fragment and two rural fragments, and (b) between adjacent bamboo and non-bamboo habitats. We captured the birds in mist-nets, banded each individual, and georeferenced the capture sites. The results of the study indicate that the structure of the understory bird community varies both among the fragments and between bamboo and non-bamboo habitats. Most birds species are found in both types of habitats, although the structure of the bird community differs between habitats, due to the presence of specialist species to bamboo habitats. The structure of the bird community in each forest fragment is unique, and this must be taken into account in the formulation of strategies for the conservation and management of the region’s biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alencar, L., Lima, J, Souza, V., Pedroza, D., Santos, E., & Guilherme, E. (2020). A Ornitologia na Fazenda Experimental Catuaba. In: Silveira, M., Guilherme, E., Vieira, L. J. S. (eds.), Fazenda Experimental Catuaba: o seringal que virou laboratório-vivo em uma paisagem fragmentada no Acre. Stricto Sensu Editora, Acre (pp 297–330).

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

    Google Scholar 

  • Anjos, L. (2001). Bird communities in five Atlantic Forest fragments in southern Brazil. Ornitologia Neotropical, 12, 11–27.

    Google Scholar 

  • Areta, J. I., Bodrati, A., & Cockle, K. (2009). Specialization on Guadua bamboo seeds by three bird species in the Atlantic Forest of Argentina. Biotropica, 41, 66–73.

    Google Scholar 

  • Barbosa, K. V. C., Knogge, C., Develey, P. F., Jenkins, C. N., & Uezu, A. (2017). Use of small Atlantic Forest fragments by birds in Southeast Brazil. Perspectives in Ecology and Conservation, 15, 42–46.

    Google Scholar 

  • Barroso, J. G., Salimon, C. I., Silveira, M., & Morato, E. F. (2011). Influência de fatores ambientais sobre a ocorrência e distribuição espacial de cinco espécies madeireiras exploradas no Estado do Acre, Brasil. Scientia Forestalis, 39, 489–499.

    Google Scholar 

  • Bierregaard, R. O., Lovejoy, T. E., Kapos, V., Santos, A. A. & Hutchings, R. W. (1992). The biological dynamics of tropical rainforest fragments. Bioscience, 42, 859–866.

  • Bierregaard, R. O., Gascon, C., Lovejoy, T. E., & Mesquita, R. (2001). Lessons from Amazonia: The ecology and conservation of a fragmented forest. Yale University Press.

    Google Scholar 

  • Caughley, G. (1981). Overpopulation. In P. A. Jewell, S. Holt, & D. Hart (Eds.), Problems in management of locally abundant wild mammals (pp. 7–19). Academic Press.

    Google Scholar 

  • Cintra, R. & Naka, L. N. (2012). Spatial variation in bird community composition in relation to topographic gradient and forest heterogeneity in a central Amazonian rainforest. International Journal of Ecology. https://doi.org/10.1155/2012/435671.

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in Community structure. Austral Ecology. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Davidson, D. W., Arias, J. A., & Mann, J. (2006). An experimental study of bamboo ants in western Amazonia. Insectes Sociaux. https://doi.org/10.1007/s00040-005-0843-8

    Article  Google Scholar 

  • del Hoyo, J., Bates, J., Kirwan, G. M., & Collar, N., (2020a). Olivaceous Flatbill (Rhynchocyclus olivaceus), version 1.0. In: Billerman, S. M., Keeney, B. K., Rodewald, P. G., & Schulenberg, T. S. (eds.), Birds of the World. Cornell Lab of Ornithology, Ithaca, https://doi.org/10.2173/bow.olifla1.01.

  • del Hoyo, J., Collar, N., & Kirwan, G. M. (2020b). Peruvian Warbling-Antbird (Hypocnemis peruviana), version 1.0. In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A., & Juana, E. (eds.), Birds of the World. Ithaca: Cornell Lab of Ornithology, https://doi.org/10.2173/bow.perwaa1.01.

  • Dunnum, J. L., & Salazar-Bravo, J. (2004). Dactylomys Boliviensis. Mammalian Species, 745, 1–4.

    Google Scholar 

  • Ferraz, G., Nichols, J. D., Hines, J. E., Stoufer, P. C., Bierregaard, R. O., Jr., & Lovejoy, T. E. (2007). A large scale deforestation experiment: Effects of patch area and isolation on Amazon birds. Science, 315, 238–241.

    CAS  PubMed  Google Scholar 

  • Floriano, D. D., Lima, J., & Guilherme, E. (2020). Breeding biology of the Olivaceous Flatbill (Rhynchocyclus olivaceus) in an Amazonian forest fragment of northwest Brazil. The Wilson Journal of Ornithology, 132, 587–597.

    Google Scholar 

  • Gascon, C., Lovejoy, T. E., Bierregaard, R. O., Malcolm, J. R., Stouffer, P. C., Vasconcelos, H. L., Laurence, W. F., Zimmerman, B., Tocher, M., & Borges, S. (1999). Matrix habitat and species richness in tropical forest remnants. Biological Conservation, 91, 223–229.

    Google Scholar 

  • Griscom, B. W., & Ashton, P. M. S. (2006). A self-perpetuating bamboo disturbance cycle in a neotropical forest. Journal of Tropical Ecology, 22, 587–597.

    Google Scholar 

  • Guilherme E (2016) Aves do Acre. Editora Edufac, Acre.

  • Guilherme, E. (2001). Comunidade de Aves do Campus e Parque Zoobotânico da Universidade Federal do Acre, Brasil. Tangara, 1, 57–73.

    Google Scholar 

  • Guimarães, D. P., & Guilherme, E. (2021). Structure and home range size of mixed-species bird flocks in a bamboo forest in southwestern Amazonia. Acta Ornithologica, 56, 1–14.

    Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • Hofmeister, J., Hošek, J., Brabec, M., & Kocvara, R. (2017). Spatial distribution of bird communities in small forest fragments in central Europe in relation to distance to the forest edge, fragment size and type of forest. Forest Ecology and Management, 401, 255–263.

    Google Scholar 

  • Houtan, K. S. V., Pimm, S. L., Bierregaard, R. O., Jr., Lovejoy, T. E., & Stouffer, P. C. (2006). Local extinctions in flocking birds in Amazonian forest fragments. Evolutionary Ecology Research, 8, 129–148.

    Google Scholar 

  • Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456.

    Google Scholar 

  • Isler, M. L., Isler, P. R., & Whitney, B. M. (2007). Species limits in Antbirds (Thamnophilidae): The Warbling Antbird (Hypocnemis cantator) complex. The Auk, 124, 11–28.

    Google Scholar 

  • Jacobs, J. M., von May, R., Kavanaugh, D. H. & Connor, E. F. (2018). Beetles in bamboo forests: community structure in a heterogeneous landscape of southwestern Amazonia. PeerJ, 6, e5153. https://doi.org/10.7717/peerj.5153.

  • Kratter, A. W. (1997). Bamboo specialization by Amazonian birds. Biotropica, 29, 100–110.

    Google Scholar 

  • Kroodsma, D. E., & Brewer, D. (2020). Moustached Wren (Pheugopedius genibarbis), version 1.0. In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A., & Juana, E. (eds.), Birds of the World. Cornell Lab of Ornithology, Ithaca, https://doi.org/10.2173/bow.mouwre2.01.

  • Lebbin, D. J. (2013). Nestedness and patch size of bamboo-specialist bird communities in southeastern Peru. The Condor., 115, 230–236.

    Google Scholar 

  • Meneses-Filho, L. C. L., Ferraz, P. A., Pinha, J. F. M., Ferreira, L. A., & Brilhante, N. A. (1995). Comportamento de 24 espécies arbóreas tropicais madeireiras introduzidas no Parque Zoobotânico de Rio Branco-Acre. Editora Edufac, Acre.

  • Montibeller, B., Kmoch, A., Virro, H., Mander, Ü., & Uuemaa, E. (2020). Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Science and Reports. https://doi.org/10.1038/s41598-020-62591-x

    Article  Google Scholar 

  • Nascimento, E. S., Silva, S. S., Bordignon, L., Melo, A. W. F., Brandão, A., Jr., Souza, C. M., Jr., & Junior, C. H. S. L. (2021). Roads in the Southwestern Amazon, State of Acre, between 2007 and 2019. Land, 10, 106.

    Google Scholar 

  • Nelson, B. W., Oliveira, A. C. A., Batista, G. T., Vidalenc, D., & Silveira, M. (2001). Modeling biomass of forests in the southwest Amazon by polar ordination of Landsat TM. In: Ribeiro, M. L., & Souza, Y. R. S. (eds.), Proceedings, Tenth Brazilian Remote Sensing Symposium. INPE, Paraná (pp. 1683–1690).

  • Nelson, B. W. (1994). Natural forest disturbance and change in the Brazilian Amazon. Remote Sensing Reviews, 10, 105–125.

    Google Scholar 

  • Olmos, F., Galetti, M., Pashoal, M., & Mendes, S. L. (1993). Habits of the southern Bamboo Rat, Kannabateomys amblyonyx (Rodentia, Echimyidae) in Southeastern Brazil. Mammalia, 57, 325–333.

    Google Scholar 

  • Pedroza, D., & Guilherme, E. (2019). Home range, population density, and foraging behaviour of the Yellowbreasted Warbling-Antbird (Hypocnemis subflava) in forest fragments in southwestern Brazilian Amazonia. Journal of Natural History. https://doi.org/10.1080/00222933.2019.1667036

    Article  Google Scholar 

  • Pedroza, D., Melo, T. N., Silva, T. L., Guimarães, D. P., Lima, J. M., & Guilherme, E. (2020). Birds of Humaitá Forest Reserve, Acre, Brazil: An important forest fragment in south-west Amazonia. Bulletin of British Ornithology Club, 140, 58–79.

    Google Scholar 

  • Piacentini, V. Q., Aleixo, A., Agne, C. E., Maurício, G. N., Pacheco, J. F., Bravo, G. A., et al. (2015). Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Commitee / Lista comentada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos. Rev Bras Orn, 23, 91–298.

    Google Scholar 

  • Rasmussen, D. T., Rehg, J., & Guilherme, E. (2005). Avifauna da Fazenda Experimental Catuaba: Uma pequena reserva florestal no leste do Estado do Acre, Brasil. In: Drumond, P. M. (eds.), Fauna do Acre. Edufac, Acre (pp. 173–198).

  • Reid, S., Díaz, I. A., Armesto, J. J., & Willson, M. F. (2004). Importance of native bamboo for understory birds in Chilean temperate forests. The Auk, 121, 515–525.

    Google Scholar 

  • Ribas, C. C., & Aleixo, A. (2019). Diversity and evolution of Amazonian birds: implications for conservation and biogeography. A Acad Bras Ciên 91, e20190218.

  • Ribon, R., & Marini, M. A. (2016). Small territory sizes and high densities of insectivorous birds in an Atlantic Forest secondary fragment, Brazil. Revista Brasileira De Ornitologia, 24, 303–313.

    Google Scholar 

  • Ribon, R., Simon, J. E., & Mattos, G. T. (2003). Bird extinctions in Atlantic Forest fragments of the Viçosa region, southeastern Brazil. Conservation Biology, 17, 1827–1839.

    Google Scholar 

  • Robinson, S. K., & Terborgh, J. (1995). Interspecific aggression and habitat selection by Amazonian birds. Journal of Animal Ecology, 64, 1–11.

    Google Scholar 

  • Roriz, P. A. C., Yanai, A. M., & Fearnside, P. M. (2017). Deforestation and carbon loss in Southwest Amazonia: Impact of Brazil’s revised forest code. Environmental Management, 60, 367–382.

    PubMed  PubMed Central  Google Scholar 

  • Rother, D. C., Alves, K. J. F., & Pizo, M. A. (2013). Avian assemblages in bamboo and non-bamboo habitats in a tropical rainforest. Emu, 113, 52–61.

    Google Scholar 

  • Santana, C. R., & Anjos, L. (2010). Associação de aves a agrupamentos de bambu na porção Sul da Mata Atlântica, Londrina, Estado do Paraná, Brasil. Biota Neotropica, 10, 39–44.

    Google Scholar 

  • Schulenberg, T. S., Stotz, D. F., Lane, D. F., O’Neill, J. P., & Parker, T. A., III. (2007). Birds of Peru (1st ed.). Princeton University Press.

    Google Scholar 

  • Silveira, M. (2005). A floresta aberta com bambu no sudoeste da Amazônia. Padrões e processos em múltiplas escalas. Editora Edufac, Acre.

  • Silveira, M., Guilherme, E., & Vieira, L. J. S. (2020). Fazenda Experimental Catuaba: o seringal que virou laboratório-vivo em uma paisagem fragmentada no Acre. Stricto Sensu Editora, Acre.

  • Simon, M. F., & Garagorry, F. L. (2005). The expansion of agriculture in the Brazilian Amazon. Environmental Conservation, 32, 203–212.

    Google Scholar 

  • Socolar, S. J., Robinson, S. K., & Terborgh, J. (2013). Bird diversity and occurrence of bamboo specialists in two bamboo die-offs in Southeastern Peru. The Condor, 115, 253–262.

    Google Scholar 

  • Souza, J. B., Guilherme, E., & Cornelius, C. (2020). Integrando fragmentos: uma proposta de conectividade para duas áreas verdes urbanas do município de Rio Branco, Acre. In: Pereira, H. S., & Mariosa, P. H. (eds.), Riscos e perspectivas da gestão ambiental na Amazônia. Appris, Curitiba (pp. 85–96).

  • Stotz, D. F., Fitzpatrick, J. W., Parker, T. A., III., & Moskovits, D. K. (1996). Neotropical birds: Ecology and conservation. University of Chicago Press.

    Google Scholar 

  • Stouffer, P. C., Jirinec, V., Rutt, C. L., Bierregaard, R. O., Jr., Hernández-Palma, A., Johnson, E. I., Midway, S. R., Powell, L. L., Wolfe, J. D., & Lovejoy, T. E. (2021). Long-term change in the avifauna of undisturbed Amazonian rainforest: Ground-foraging birds disappear and the baseline shifts. Ecology Letters, 24, 186–195.

    PubMed  Google Scholar 

  • Stouffer, P. C., Johnson, E. I., Bierregaard, R. O., Jr., & Lovejoy, T. E. (2011). Understory Bird Communities in Amazonian Rainforest Fragments: Species turnover through 25 years post-isolation in recovering landscapes. PLoS ONE. https://doi.org/10.1371/journal.pone.0020543

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobias, J., & Seddon, N. (2009). Signal design and perception in Hypocnemis Antbirds: Evidence for convergent evolution via social selection. Evolution, 63, 3168–3189.

    PubMed  Google Scholar 

  • Willems, E. P., & Hill, R. A. (2009). Predator-specific landscapes of fear and resource distribution: Effects on spatial range use. Ecology, 90, 546–555.

    PubMed  Google Scholar 

  • Yates, D., Moore, D., & McCabe, G. (1999). The practice of statistics (1st ed.). W.H. Freeman.

    Google Scholar 

  • Zimmer, K., & Isler, M. L. (2020b). White-throated Antbird (Oneillornis salvini), version 1.0. In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A., & Juana, E. (eds.), Birds of the World. Ithaca: Cornell Lab of Ornithology; https://doi.org/10.2173/bow.whtant1.01.

  • Zimmer, K., & Isler, M. L. (2020a). Plumbeous Antbird (Myrmelastes hyperythrus), version 1.0. In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A., & Juana, E. (eds.), Birds of the World. Ithaca: Cornell Lab of Ornithology, https://doi.org/10.2173/bow.pluant1.01.

Download references

Acknowledgements

We thank to the Universidade Federal do Acre—UFAC, to Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, to Laboratório de Ornitologia da UFAC, to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting the first author a scholarship for granting the first author a scholarship, to Centro Nacional de Pesquisa e Conservação de Aves Silvestres (CEMAVE/ICMBio) for providing the bands used in project 1099, to biologist Richarlly Costa, and Dr Paulo A. Vieira Borges for help with the statistical analyses. We dedicate this work to biologist Felipe Wilian Santana Rocha (in memoriam) for his friendship and contribution during the field collections.

Funding

This work was supported by the CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [1652734].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Pedroza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Appendix

Appendix

Population density of birds captured in three forest fragments in southwestern Amazonia. The Kruskal–Wallis test (applied only to species that occurred in all three grids) was used to possible differences in population density between the bamboo and non-bamboo habitats. The total number of captures in each grid and habitat is shown in the Supplementary Material 1. ZP = Zoobotanical Park, CEF = Catuaba Experimental Farm, HFR = Humaitá Forest Reserve and * = significant difference.

Family and species

Population density (ind/ha)

Kruskal–Wallis test

Forest fragments

Bamboo habitat

Non-bamboo habitat

ZP

CEF

HFR

ZP

CEF

HFR

ZP

CEF

HFR

Columbidae

          

Leptotila rufaxilla

  

0.06

     

0.15

Not tested

Geotrygon montana

0.12

  

0.19

  

0.09

  

Not tested

Cuculidae

          

Coccycua minuta

0.06

     

0.09

  

Not tested

Coccyzus melacoryphus

0.06

     

0.09

  

Not tested

Caprimulgidae

          

Antrostomus sericocaudatus

 

0.19

  

0.27

  

0.12

 

Not tested

Trochilidae

          

Glaucis hirsutus

0.31

0.06

0.12

0.37

 

0.11

0.38

0.12

0.15

H = 0.19, p = 0.27

Phaethornis ruber

0.19

0.06

0.12

0.56

 

0.22

 

0.12

 

H = 1.19, p = 0.25

Phaethornis hispidus

0.19

0.06

0.31

 

0.14

 

0.56

 

0.73

H = 1.19, p = 0.25

Phaethornis philippii

 

0.12

0.19

  

0.33

 

0.23

 

Not tested

Phaethornis malaris

 

0.12

     

0.29

 

Not tested

Chlorostilbon mellisugus

  

0.06

  

0.11

   

Not tested

Thalurania furcata

0.44

0.06

 

0.75

0.14

 

0.28

  

Not tested

Hylocharis cyanus

0.12

  

0.27

     

Not tested

Amazilia lactea

0.25

 

0.06

0.74

 

0.11

   

Not tested

Heliomaster longirostris

0.06

     

0.09

  

Not tested

Trogonidae

          

Trogon curucui

 

0.06

  

0.14

    

Not tested

Trogon collaris

 

0.06

     

0.15

 

Not tested

Alcedinidae

          

Chloroceryle aenea

0.25

     

0.38

  

Not tested

Momotidae

          

Electron platyrhynchum

  

0.12

     

0.29

Not tested

Momotus momota

0.19

 

0.19

   

0.28

 

0.44

Not tested

Bucconidae

          

Bucco macrodactylus

0.37

  

0.75

  

0.19

  

Not tested

Monasa nigrifrons

0.19

     

0.28

  

Not tested

Monasa morphoeus

 

0.06

     

0.12

 

Not tested

Capitonidae

          

Capito auratus

0.06

  

0.19

     

Not tested

Ramphastidae

          

Pteroglossus inscriptus

0.06

     

0.09

  

Not tested

Pteroglossus beauharnaisii

 

0.12

     

0.23

 

Not tested

Picidae

          

Picumnus rufiventris

0.94

  

2.78

     

Not tested

Veniliornis affinis

0.06

    

0.19

   

Not tested

Veniliornis passerinus

  

0.31

  

0.43

  

0,58

Not tested

Celeus spectabilis

0.06

  

0.19

     

Not tested

Campephilus melanoleucos

 

0.06

  

0.14

    

Not tested

Thamnophilidae

          

Microrhopias quixensis

  

0.06

  

0.19

   

Not tested

Epinecrophylla leucophthalma

  

0.06

  

0.19

   

Not tested

Epinecrophylla ornata

  

0.31

  

0.55

   

Not tested

Myrmotherula axillaris

0.31

0.06

0.62

0.56

0.14

0.33

0.19

 

1.02

H = 0.04, p = 0.83

Myrmotherula longipennis

 

0.12

     

0.23

 

Not tested

Isleria hauxwelli

 

0.19

0.37

  

0.11

 

0.35

0.73

Not tested

Thamnomanes ardesiacus

  

0.19

     

0.44

Not tested

Thamnomanes schistogynus

0.31

0.06

0.44

0.56

 

0.55

0.28

0.12

0.29

H = 0.42, p = 0.51

Thamnophilus schistaceus

0.31

0.25

 

0.19

0.27

 

0.38

0.23

 

Not tested

Thamnophilus aethiops

 

0.31

0.31

 

0.14

0.22

 

0.46

0.44

Not tested

Myrmelastes hyperythrus

0.62

  

1.30

  

0.03

  

Not tested

Myrmoborus myotherinus

  

0.25

  

0.22

  

0.29

Not tested

Sciaphylax hemimelaena

0.81

0.94

0.69

1.48

1.23

0.55

0.47

0.69

0.88

H = 1.19, p = 0.27

Cercomacroides fuscicauda

  

0.19

     

0.44

Not tested

Hypocnemis subflava

0.25

0.25

0.43

0.74

0.55

0.76

   

H = 3.85, p = 0.04*

Hypocnemis peruviana

  

0.31

     

0.73

Not tested

Willisornis poecilinotus

  

0.68

  

0.22

  

1.31

Not tested

Phlegopsis nigromaculata

 

0.06

0.31

  

0.22

 

0.12

0.44

Not tested

Oneillornis salvini

  

0.69

  

0.87

  

0.44

Not tested

Conopophagidae

          

Conopophaga peruviana

  

0.06

     

0.15

Not tested

Grallaridae

          

Hylopezus berlepschi

0.12

  

0.37

     

Not tested

Formicariidae

          

Formicarius colma

 

0.12

0.31

  

0.11

 

0.23

0.58

Not tested

Dendrocolaptidae

          

Dendrocincla fuliginosa

0.06

0.44

0.19

 

0.27

0.11

0.09

0.46

0.29

H = 1.19, p = 0.27

Dendrocincla merula

0.25

 

0.31

0.37

 

0.33

0.19

 

0.29

Not tested

Sittasomus griseicapillus

 

0.12

0.06

 

0.27

  

0.12

0.15

Not tested

Glyphorynchus spirurus

 

0.62

0.12

 

0.27

0.11

 

0.92

0.15

Not tested

Xiphorhynchus elegans

 

0.19

0.06

    

0.35

0.15

Not tested

Xiphorhynchus guttatoides

0.44

0.19

 

0.37

  

0.47

0.35

 

Not tested

Campylorhamphus trochilirostris

0.12

  

0.37

     

Not tested

Dendroplex picus

 

0.06

  

0.14

    

Not tested

Dendrocolaptes picumnus

 

0.06

     

0.12

 

Not tested

Xenopidae

          

Xenops minutus

0.06

 

0.31

0.19

 

0.22

  

0.43

Not tested

Furnariidae

          

Automolus rufipileatus

0.06

0.06

 

0.19

0.14

    

Not tested

Automolus subulatus

  

0.06

     

0.15

Not tested

Automolus ochrolaemus

 

0.56

0.31

 

0.41

0.11

 

0.69

0.58

Not tested

Philydor erythrocercum

0.06

     

0.94

  

Not tested

Synallaxis rutilans

 

0.06

  

0.14

    

Not tested

Pipridae

          

Neopelma sulphureiventer

0.12

  

0.19

  

0.09

  

Not tested

Pipra fasciicauda

4.31

0.69

1.69

7.78

0.27

1.09

2.55

0.80

2.48

H = 0.05, p = 0.82

Ceratopipra rubrocapilla

 

0.06

0.06

    

0.11

0.15

Not tested

Lepidothrix coronata

 

0.06

     

0.13

 

Not tested

Machaeropterus pyrocephalus

1

  

2.22

  

0.38

  

Not tested

Onychorhynchidae

          

Onychorhynchus coronatus

0.12

0.19

0.12

0.37

0.14

0.11

 

0.23

0.15

H = 0.05, p = 0.82

Terenotriccus erythrurus

 

0.06

0.12

  

0.11

 

0.12

0.15

Not tested

Tityridae

          

Laniocera hypopyrra

 

0.06

0.25

  

0.22

 

0.12

0.29

Not tested

Tityridae

          

Pachyramphus polychopterus

 

0.06

  

0.14

    

Not tested

Rhynchocyclidae

          

Mionectes oleagineus

 

0.06

0.25

 

0.14

0.22

  

0.29

Not tested

Leptopogon amaurocephalus

0.19

0.37

0.37

 

0.55

0.11

0.28

0.23

0.73

H = 1.19, p = 0.27

Corythopis torquatus

0.12

 

0.12

   

0.19

 

0.29

Not tested

Rhynchocyclus olivaceus

2.31

  

3.15

  

2.07

  

Not tested

Hemitriccus flammulatus

1

0.25

0.25

2.40

0.55

0.11

0.05

 

0.43

H = 2.33, p = 0.13

Lophotriccus eulophotes

 

0.12

0.31

 

0.31

0.33

  

0.29

Not tested

Tyrannidae

          

Attila spadiceus

0.12

0.06

0.19

0.37

0.14

0.33

   

Not tested

Ramphotrigon megacephalum

 

0.06

  

0.14

    

Not tested

Ramphotrigon ruficauda

 

0.12

  

0.23

    

Not tested

Ramphotrigon fuscicauda

  

0.12

     

0.29

Not tested

Myiarchus ferox

0.06

  

0.19

     

Not tested

Cnemotriccus_fuscatus

  

0.19

     

0.44

Not tested

Troglodytidae

         

Not tested

Microcerculus marginatus

  

0.31

  

0.22

  

0.44

Not tested

Pheugopedius genibarbis

2.25

0.19

0.25

4.63

0.41

0.44

1.04

  

H = 1.19, p = 0.27

Cantorchilus leucotis

0.5

  

0.74

  

0.46

  

Not tested

Turdidae

          

Catharus swainsoni

  

0.06

     

0.15

Not tested

Turdus ignobilis

0.06

  

0.19

     

Not tested

Turdus hauxwelli

0.19

  

0.37

  

0.94

  

Not tested

Passerellidae

          

Arremon taciturnus

  

0.25

  

0.58

   

Not tested

Icteridae

          

Cacicus cela

0.12

  

0.37

     

Not tested

Thraupidae

          

Ramphocelus carbo

0.06

 

0.19

0.19

    

0.43

Not tested

Sporophila angolensis

 

0.06

0.19

  

0.22

 

0.12

0.15

Not tested

Saltator maximus

  

0.06

     

0.15

Not tested

Cardinalidae

          

Habia rubra

 

0.12

0.12

    

0.23

0.29

Not tested

Cyanoloxia rothschildii

 

0.06

0.12

 

0.14

   

0.29

Not tested

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedroza, D., Guilherme, E. Community structure and spatial distribution of understory birds in three bamboo-dominated forests in southwestern Amazonia. COMMUNITY ECOLOGY 22, 277–293 (2021). https://doi.org/10.1007/s42974-021-00053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-021-00053-8

Keywords

Navigation