Skip to main content
Log in

A Domain Decomposition Method for Nonconforming Finite Element Approximations of Eigenvalue Problems

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

Since the nonconforming finite elements (NFEs) play a significant role in approximating PDE eigenvalues from below, this paper develops a new and parallel two-level preconditioned Jacobi-Davidson (PJD) method for solving the large scale discrete eigenvalue problems resulting from NFE discretization of 2mth \((m=1,2)\) order elliptic eigenvalue problems. Combining a spectral projection on the coarse space and an overlapping domain decomposition (DD), a parallel preconditioned system can be solved in each iteration. A rigorous analysis reveals that the convergence rate of our two-level PJD method is optimal and scalable. Numerical results supporting our theory are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This research does not use any external or author-collected data.

References

  1. Adams, R.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1975)

  2. Babuška, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52(186), 275–297 (1989)

    Article  MathSciNet  Google Scholar 

  3. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.: A two-level additive Schwarz preconditioner for nonconforming plate elements. Numer. Math. 72(4), 419–447 (1996)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897–921 (1996)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Xie, H., Fei, X.: A full multigrid method for eigenvalue problems. J. Comput. Phys. 322, 747–759 (2016)

    Article  MathSciNet  Google Scholar 

  7. Evans, L.: Partial Differential Equations, 2nd edn, vol. 19. American Mathematical Society, Providence (2010)

  8. Hu, J., Huang, Y.: The correction operator for the canonical interpolation operator of the Adini element and the lower bounds of eigenvalues. Sci. China Math. 55(1), 187–196 (2012)

    Article  MathSciNet  Google Scholar 

  9. Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61(1), 196–221 (2014)

    Article  MathSciNet  Google Scholar 

  10. Hu, J., Huang, Y., Shen, Q.: The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators. J. Sci. Comput. 58(3), 574–591 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hu, J., Huang, Y., Shen, Q.: Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods. Numer. Math. 131(2), 273–302 (2015)

    Article  MathSciNet  Google Scholar 

  12. Liang, Q., Wang, W., Xu, X.: A two-level block preconditioned Jacobi-Davidson method for multiple and clustered eigenvalues of elliptic operators. arxiv: 2203.06327 (2023)

  13. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33(1), 23–42 (1979)

    Article  MathSciNet  Google Scholar 

  14. Sarkis, M.: Partition of unity coarse spaces and Schwarz methods with harmonic overlap. In: Recent Developments in Domain Decomposition Methods, pp. 77–94. Springer, Berlin, Heidelberg (2002)

  15. Sleijpen, G.L.G., Van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42(2), 267–293 (2000)

    Article  MathSciNet  Google Scholar 

  16. Toselli, A., Widlund, O.: Domain decomposition methods-algorithms and theory. In: Springer Series in Computational Mathematics, vol. 34, Springer, Berlin, Heidelberg (2005)

  17. Wang, W., Xu, X.J.: A two-level overlapping hybrid domain decomposition method for eigenvalue problems. SIAM J. Numer. Anal. 56(1), 344–368 (2018)

    Article  MathSciNet  Google Scholar 

  18. Wang, W., Xu, X.J.: On the convergence of a two-level preconditioned Jacobi-Davidson method for eigenvalue problems. Math. Comput. 88(319), 2295–2324 (2019)

    Article  MathSciNet  Google Scholar 

  19. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MathSciNet  Google Scholar 

  20. Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34(2), 592–608 (2014)

    Article  MathSciNet  Google Scholar 

  21. Xu, F., Xie, H., Zhang, N.: A parallel augmented subspace method for eigenvalue problems. SIAM J. Sci. Comput. 42(5), A2655–A2677 (2020)

    Article  MathSciNet  Google Scholar 

  22. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70(233), 17–25 (2001)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18, 413–418 (2000)

    MathSciNet  Google Scholar 

  24. Yang, Y.: Two-grid discretization schemes of the nonconforming FEM for eigenvalue problems. J. Comput. Math. 27(6), 748–763 (2009)

    Article  MathSciNet  Google Scholar 

  25. Yang, Y., Bi, H.: Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 49(4), 1602–1624 (2011)

    Article  MathSciNet  Google Scholar 

  26. Yang, Y., Bi, H., Han, J., Yu. Y.: The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems. SIAM J. Sci. Comput. 37(6), A2583–A2606 (2015)

    Article  MathSciNet  Google Scholar 

  27. Yang, Y., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math. 36(3), 443–450 (2012)

    Article  MathSciNet  Google Scholar 

  28. Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using non-conforming finite elements. Sci. China Math. 53(1), 137–150 (2010)

    Article  MathSciNet  Google Scholar 

  29. Zhai, Q., Xie, H., Zhang, R., Zhang, Z.: Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem. J. Sci. Comput. 79(2), 914–934 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zhao, T., Hwang, F.-N., Cai, X.-C.: A domain decomposition based Jacobi-Davidson algorithm for quantum dot simulation. In: Domain Decomposition Methods in Science and Engineering XXII, pp. 415–423. Springer, New York (2016)

  31. Zhao, T., Hwang, F.-N., Cai, X.-C.: Parallel two-level domain decomposition based Jacobi-Davidson algorithms for pyramidal quantum dot simulation. Comput. Phys. Commun. 204, 74–81 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees, who meticulously read through the paper and made many helpful suggestions and comments which led to an improved presentation of this paper.

Funding

The first author is supported by the China Postdoctoral Science Foundation (No. 2023M742662). The third author is supported by the National Natural Science Foundation of China (Grant Nos. 12071350 and 12331015).

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contribution.

Corresponding author

Correspondence to Xuejun Xu.

Ethics declarations

Conflict of Interest

There is no potential conflict of interest.

Compliance with Ethical Standards

The submitted work is original and is not published elsewhere in any form or language.

Ethical Approval

This article does not contain any studies involving animals. This article does not contain any studies involving human participants.

Informed Consent

This research does not have any human participant.

Additional information

This paper is dedicated to the memory of Professor Zhong-Ci Shi.

Appendix A

Appendix A

The algorithm based on NFE for computing multiple and clustered eigenvalues is put in the following. For our earlier work based on CFEs, see [12] for details.

Algorithm A Two-Level PJD Algorithm for Multiple Eigenvalues

\({\mathbf {Step\ 1}}\) Solve a coarse eigenvalue problem:

                        \(A^{H}u_{i}^{H}=\lambda _{i}^{H}u_{i}^{H},\ \ \ b(u_{i}^{H},u_{j}^{H})=\delta _{ij},\ \ \ \ i,j=1,2,\cdots ,s.\)

Set \({\bar{u}}_{i}^{0}=\frac{I_{H}^{h}u_{i}^{H}}{||I_{H}^{h}u_{i}^{H}||_{b}}\), \({\bar{U}}^{0}=\textrm{span}\{{\bar{u}}_{i}^{0}\}_{i=1}^{s}.\)

Solve a small dimensional eigenvalue problem:

                        \(a(u_{i}^{0},v)=\lambda _{i}^{0}b(u_{i}^{0},v)\ \ \ \ {\text{for all}} \ v\in {\bar{U}}^{0},\ b(u_{i}^{0},u_{j}^{0})=\delta _{ij},\ i,j=1,2,\cdots ,s.\)

Set \(U^{0}=\textrm{span}\{u_{i}^{0}\}_{i=1}^{s}, \Lambda ^{0}=\{\lambda _{i}^{0}\}_{i=1}^{s}\), \(W^{0}=U^{0}\).

\({\mathbf{Step\ 2}}\) For \(k=0, 1, 2, \cdots ,\) solve parallel preconditioned systems:

                        \(t_{i}^{k+1}=(I-Q_{U^{k}})(B_{i}^{k})^{-1}r_{i}^{k}=(B_{i}^{k})^{-1}r_{i}^{k}-\sum _{i=1}^{s}b((B_{i}^{k})^{-1}r_{i}^{k},u_{i}^{k})u_{i}^{k},\)

where \(r_{i}^{k}=\lambda _{i}^{k}u_{i}^{k}-A^{h}u_{i}^{k}\) and \((B_{i}^{k})^{-1}\) is defined in (A1).

\({\mathbf{Step\ 3}}\) Solve the first s eigenpairs in \(W^{k+1}\):

                        \(a(u_{i}^{k+1},v)=\lambda _{i}^{k+1}b(u_{i}^{k+1},v)\ \ \ \ {\text{for all}} \ v\in W^{k+1},\ b(u_{i}^{k+1},u_{j}^{k+1})=\delta _{ij},\)

where \(\ i,j=1,2,\cdots ,s\), \(W^{k+1}=W^{k}+\text {span}\{t_{i}^{k+1}\}_{i=1}^{s}\). Set \(U^{k+1}=\text {span}\{u_{i}^{k+1}\}_{i=1}^{s},\ \Lambda ^{k+1}=\{\lambda _{i}^{k+1}\}_{i=1}^{s}.\)

\({\mathbf {Step\ 4}}\) If \(\sum _{i=1}^{s}|\lambda _{i}^{k+1}-\lambda _{i}^{k}|<tol\), return \((\Lambda ^{k+1},U^{k+1})\). Otherwise, go to \({\mathbf{Step\ 2}}\).

The preconditioner for \(A^{h}-\lambda _{i}^{k}\) is written as

$$\begin{aligned} (B_{i}^{k})^{-1}=I_{H}^{h}(A^{H}-\lambda _{i}^{k})^{-1}Q_{s+1}^{H}(I_{H}^{h})^{*} +\sum _{l=1}^{N}(A^{(l)}-\lambda _{i}^{k})^{-1}Q^{(l)}, \end{aligned}$$
(A1)

where \(V_{CR}^{H}= U_{s}^{H}\oplus U_{s+1}^{H}\) with \(U_{s}^{H}\) denoting the span of the first s discrete eigenvectors of \(A^{H}\), and \(Q_{s+1}^{H}\) is an orthogonal projector from \(V_{CR}^{H}\) onto \(U_{s+1}^{H}\) with respect to \(b(\cdot ,\cdot )\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Wang, W. & Xu, X. A Domain Decomposition Method for Nonconforming Finite Element Approximations of Eigenvalue Problems. Commun. Appl. Math. Comput. (2024). https://doi.org/10.1007/s42967-024-00372-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-024-00372-3

Keywords

Mathematics Subject Classification

Navigation