Skip to main content
Log in

Meshfree Finite Difference Solution of Homogeneous Dirichlet Problems of the Fractional Laplacian

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

A so-called grid-overlay finite difference method (GoFD) was proposed recently for the numerical solution of homogeneous Dirichlet boundary value problems (BVPs) of the fractional Laplacian on arbitrary bounded domains. It was shown to have advantages of both finite difference (FD) and finite element methods, including their efficient implementation through the fast Fourier transform (FFT) and the ability to work for complex domains and with mesh adaptation. The purpose of this work is to study GoFD in a meshfree setting, a key to which is to construct the data transfer matrix from a given point cloud to a uniform grid. Two approaches are proposed, one based on the moving least squares fitting and the other based on the Delaunay triangulation and piecewise linear interpolation. Numerical results obtained for examples with convex and concave domains and various types of point clouds are presented. They show that both approaches lead to comparable results. Moreover, the resulting meshfree GoFD converges in a similar order as GoFD with unstructured meshes and finite element approximation as the number of points in the cloud increases. Furthermore, numerical results show that the method is robust to random perturbations in the location of the points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this paper as no datasets were generated or analysed during the current study.

References

  1. Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2D homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74, 784–816 (2017)

    Article  MathSciNet  Google Scholar 

  2. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Glusa, C.: Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327, 4–35 (2017)

    Article  MathSciNet  Google Scholar 

  4. Ainsworth, M., Glusa, C.: Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains. In: Contemporary Computational Mathematics—a Celebration of the 80th Birthday of Ian Sloan, pp. 17–57. Springer, Cham (2018)

    Chapter  Google Scholar 

  5. Antil, H., Brown, T., Khatri, R., Onwunta, A., Verma, D., Warma, M.: Chapter 3 — Optimal control, numerics, and applications of fractional PDEs. In: Handbook of Numerical Analysis, vol. 23, pp. 87–114. Elsevier, Amsterdam (2022)

    Google Scholar 

  6. Antil, H., Dondl, P., Striet, L.: Approximation of integral fractional Laplacian and fractional PDEs via sinc-basis. SIAM J. Sci. Comput. 43, A2897–A2922 (2021)

    Article  MathSciNet  Google Scholar 

  7. Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142, 235–278 (2019)

    Article  MathSciNet  Google Scholar 

  8. Burkardt, J., Wu, Y., Zhang, Y.: A unified meshfree pseudospectral method for solving both classical and fractional PDEs. SIAM J. Sci. Comput. 43, A1389–A1411 (2021)

    Article  MathSciNet  Google Scholar 

  9. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989). (Computational geometry (Waterloo, ON) (1987))

    Article  MathSciNet  Google Scholar 

  10. Du, N., Sun, H.-W., Wang, H.: A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains. Comput. Appl. Math. 38, 14 (2019)

    Article  MathSciNet  Google Scholar 

  11. Du, Q., Ju, L., Lu, J.: A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. Math. Comput. 88, 123–147 (2019)

    Article  MathSciNet  Google Scholar 

  12. Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    Article  MathSciNet  Google Scholar 

  13. Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45, 427–448 (2017)

    Article  MathSciNet  Google Scholar 

  14. Faustmann, M., Karkulik, M., Melenk, J.M.: Local convergence of the FEM for the integral fractional Laplacian. SIAM J. Numer. Anal. 60, 1055–1082 (2022)

    Article  MathSciNet  Google Scholar 

  15. Hao, Z., Zhang, Z., Du, R.: Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 424, 109851 (2021)

    Article  MathSciNet  Google Scholar 

  16. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Applied Mathematical Sciences Series, vol. 174. Springer, New York (2011)

    Book  Google Scholar 

  17. Huang, W., Shen, J.: A grid-overlay finite difference method for the fractional Laplacian on arbitrary bounded domains. SIAM J. Sci. Comput. (to appear). http://arxiv.org/abs/arXiv:2307.14437 (2023)

  18. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)

    Article  MathSciNet  Google Scholar 

  19. Huang, Y., Oberman, A.: Finite difference methods for fractional Laplacians. arXiv:1611.00164 (2016)

  20. Li, H., Liu, R., Wang, L.-L.: Efficient Hermite spectral-Galerkin methods for nonlocal diffusion equations in unbounded domains. Numer. Math. Theory Methods Appl. 15, 1009–1040 (2022)

    Article  MathSciNet  Google Scholar 

  21. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M. M., Ainsworth, M., Karniadakis, G. E.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    Article  MathSciNet  Google Scholar 

  22. Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method, 2nd edn. CRC Press, Boca Raton (2010)

    Google Scholar 

  23. Minden, V., Ying, L.: A simple solver for the fractional Laplacian in multiple dimensions. SIAM J. Sci. Comput. 42, A878–A900 (2020)

    Article  MathSciNet  Google Scholar 

  24. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 48391 (2006)

    Article  MathSciNet  Google Scholar 

  25. Ortigueira, M.D.: Fractional central differences and derivatives. J. Vib. Control 14, 1255–1266 (2008)

    Article  MathSciNet  Google Scholar 

  26. Pang, G., Chen, W., Fu, Z.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MathSciNet  Google Scholar 

  27. Pang, H.-K., Sun, H.-W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  Google Scholar 

  28. Shewchuk, J.R.: General-dimensional constrained Delaunay and constrained regular triangulations. I. Combinatorial properties. Discrete Comput. Geom. 39, 580–637 (2008)

    Article  MathSciNet  Google Scholar 

  29. Somasekhar, M., Vivek, S., Malagi, K.S., Ramesh, V., Deshpande, S.M.: Adaptive cloud refinement (ACR)-adaptation in meshless framework. Commun. Comput. Phys. 11, 1372–1385 (2012)

    Article  Google Scholar 

  30. Song, F., Xu, C., Karniadakis, G.E.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017)

    Article  MathSciNet  Google Scholar 

  31. Suchde, P., Jacquemin, T., Davydov, O.: Point cloud generation for meshfree methods: an overview. Arch. Comput. Methods Eng. 30, 889–915 (2023)

    Article  Google Scholar 

  32. Sun, J., Nie, D., Deng, W.: Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. BIT 61, 1421–1452 (2021)

    Article  MathSciNet  Google Scholar 

  33. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)

    Article  MathSciNet  Google Scholar 

  34. Trobec, R., Kosec, G.: Parallel Scientific Computing: Theory, Algorithms, and Applications of Mesh Based and Meshless Methods. SpringerBriefs in Computer Science, Springer, Cham (2015)

    Book  Google Scholar 

  35. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Funding

W.H. was supported in part by the University of Kansas General Research Fund FY23 and the Simons Foundation through Grant MP-TSM-00002397. J.S. was supported in part by the National Natural Science Foundation of China through Grant 12101509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinye Shen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Shi, B. & Huang, W. Meshfree Finite Difference Solution of Homogeneous Dirichlet Problems of the Fractional Laplacian. Commun. Appl. Math. Comput. (2024). https://doi.org/10.1007/s42967-024-00368-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-024-00368-z

Keywords

Mathematics Subject Classification

Navigation