Skip to main content
Log in

Piecewise Acoustic Source Imaging with Unknown Speed of Sound Using a Level-Set Method

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We investigate the following inverse problem: starting from the acoustic wave equation, reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound. When the amplitudes of the source are known a priori, we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities. When the singularities of the source are known a priori, we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes. The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry. The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Acosta, S.: Recovery of pressure and wave speed for photoacoustic imaging under a condition of relative uncertainty. Inverse Problems 35(11), 115013 (2019)

    MathSciNet  Google Scholar 

  2. Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Problems 23(5), 2089 (2007)

    MathSciNet  Google Scholar 

  3. Arridge, S.R., Betcke, M.M., Cox, B.T., Lucka, F., Treeby, B.E.: On the adjoint operator in photoacoustic tomography. Inverse Problems 32(11), 115012 (2016)

  4. Bao, G., Lin, J., Triki, F.: A multi-frequency inverse source problem. J. Differential Equations 249(12), 3443–3465 (2010)

    MathSciNet  Google Scholar 

  5. Belhachmi, Z., Glatz, T., Scherzer, O.: A direct method for photoacoustic tomography with inhomogeneous sound speed. Inverse Problems 32(4), 045005 (2016)

    MathSciNet  Google Scholar 

  6. Chung, E., Lam, C.Y., Qian, J.: A Neumann series based method for photoacoustic tomography on irregular domains. Contemporary Mathematics 615, 89–104 (2014)

    MathSciNet  Google Scholar 

  7. Colton, D.L., Kress, R., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93. Springer, New York (1998)

    Google Scholar 

  8. Finch, D., Hickmann, K.S.: Transmission eigenvalues and thermoacoustic tomography. Inverse Problems 29(10), 104016 (2013)

    MathSciNet  Google Scholar 

  9. Glowinski, R., Leung, S., Qian, J.: A penalization-regularization-operator splitting method for Eikonal-based traveltime tomography. SIAM J. Imaging Sci. 8, 1263–1292 (2015)

    MathSciNet  Google Scholar 

  10. Herglotz, G.: Über die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen, volume 44. Teubner (1914)

  11. Hristova, Y., Kuchment, P., Nguyen, L.: Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems 24(5), 055006 (2008)

    MathSciNet  Google Scholar 

  12. Huang, C., Wang, K., Schoonover, R.W., Wang, L.V., Anastasio, M.A.: Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation. IEEE Transact. Comput. imaging 2(2), 136–149 (2016)

    MathSciNet  Google Scholar 

  13. Huang, G., Qian, J.: Analysis of Kantonovich-Rubinstein norm and its application to inverse gravity problem. SIAM J. Imaging Sci. 12(3), 1528–1560 (2019)

    MathSciNet  Google Scholar 

  14. Huang, G., Zhang, X., Qian, J.: Kantorovich-Rubinstein misfit for inverting gravity-gradient data by the level-set method. Geophysics 84(5), G55–G73 (2019)

    Google Scholar 

  15. Isakov, V.: Inverse Source Problems. American Mathematical Society, Providence, Rhode Island (1990)

  16. Isakov, V.: Inverse Problems for Partial Differential Equations, vol. 127. Springer, New York (2006)

    Google Scholar 

  17. Isakov, V., Leung, S., Qian, J.: A fast local level set method for inverse gravimetry. Comm. Comput. Phys. 10, 1044–1070 (2011)

    MathSciNet  Google Scholar 

  18. Isakov, V., Leung, S., Qian, J.: A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Prob. Imaging 7, 523–544 (2013)

    MathSciNet  Google Scholar 

  19. Ishii, M., Shearer, P.M., Houston, H., Vidale, J.E.: Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature 435(7044), 933–936 (2005)

    Google Scholar 

  20. Johnson, R.L., Scott, M.P., Jeffrey, R.G., Chen, Z., Bennett, L., Vandenborn, C., Tcherkashnev, S.: Evaluating hydraulic fracture effectiveness in a coal seam gas reservoir from surface tiltmeter and microseismic monitoring. In: SPE Annual Technical Conference and Exhibition. OnePetro (2010)

  21. Knox, C., Moradifam, A.: Determining both the source of a wave and its speed in a medium from boundary measurements. Inverse Problems 36(2), 025002 (2020)

    MathSciNet  Google Scholar 

  22. Leung, S., Qian, J.: An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals. Comm. Math. Sci. 4, 249–266 (2006)

    MathSciNet  Google Scholar 

  23. Leung, S., Qian, J., Hu, J.: A level-set adjoint-state method for transmission traveltime tomography in irregular domains. SIAM J. Sci. Comput. 43, A2352–A2380 (2021)

    MathSciNet  Google Scholar 

  24. Li, W., Leung, S., Qian, J.: A level set-adjoint state method for crosswell transmission-reflection traveltime tomography. Geophys. J. Internat. 199, 348–367 (2014)

    Google Scholar 

  25. Li, W., Lu, W., Qian, J.: A level set method for imaging salt structures using gravity data. Geophysics 81(2), G35–G51 (2016)

    Google Scholar 

  26. Li, W., Lu, W., Qian, J., Li, Y.: A multiple level set method for three-dimensional inversion of magnetic data. Geophysics 82(5), J61–J81 (2017)

    Google Scholar 

  27. Li, W., Qian, J.: Joint inversion of gravity and traveltime data using a level-set based structural parameterization. Geophysics 81(6), G107–G119 (2016)

    Google Scholar 

  28. Li, W., Qian, J.: Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Prob. Imaging 15, 387–413 (2021)

    MathSciNet  Google Scholar 

  29. Li, W., Qian, J.: Kantorovich-Rubinstein metric based level-set methods for inverting modulus of gravity-force data. Inverse Prob. Imaging 16, 1643–1667 (2022)

    MathSciNet  Google Scholar 

  30. Liu, H., Uhlmann, G.: Determining both sound speed and internal source in thermo- and photo-acoustic tomography. Inverse Problems 31(10), 105005 (2015)

    MathSciNet  Google Scholar 

  31. Lu, W., Leung, S., Qian, J.: An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Prob. Imaging 9, 479–509 (2015)

    MathSciNet  Google Scholar 

  32. Lu, W., Qian, J.: A local level set method for three-dimensional inversion of gravity gradiometry data. Geophysics 80, G35–G51 (2015)

    Google Scholar 

  33. Matthews, T.P., Poudel, J., Li, L., Wang, L.V., Anastasio, M.A.: Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography. SIAM J Imaging Sci. 11(2), 1560–1588 (2018)

    MathSciNet  Google Scholar 

  34. Osher, S.J., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    Google Scholar 

  35. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    MathSciNet  Google Scholar 

  36. Osher, S.J., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    MathSciNet  Google Scholar 

  37. Qian, J., Stefanov, P., Uhlmann, G., Zhao, H.: An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. SIAM J. Imag. Sci. 4(3), 850–883 (2011)

    MathSciNet  Google Scholar 

  38. Qin, S., Yang, Y., Wang, R.: Source independent velocity recovery using imaginary FWI. In: 82nd EAGE Annual Conference & Exhibition, vol. 2021, pp. 1–5. European Association of Geoscientists & Engineers (2021)

  39. Shan, H., Wiedeman, C., Wang, G., Yang, Y.: Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach. In: Novel Optical Systems, Methods, and Applications XXII, vol. 11105, pp. 1110504. International Society for Optics and Photonics (2019)

  40. Sharan, S., Wang, R., Herrmann, F.J.: Fast sparsity-promoting microseismic source estimation. Geophys. J. Int. 216(1), 164–181 (2019)

    Google Scholar 

  41. Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Problems 25(7), 075011 (2009)

    MathSciNet  Google Scholar 

  42. Stefanov, P., Uhlmann, G.: Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. arXiv:1211.6217 (2012)

  43. Sun, J., Xue, Z., Zhu, T., Fomel, S., Nakata, N.: Full-waveform inversion of passive seismic data for sources and velocities. In: SEG Technical Program Expanded Abstracts 2016, pp. 1405–1410. Society of Exploration Geophysicists (2016)

  44. Sussman, M., Smereka, P., Osher, S.J.: A level set approach for computing solutions to incompressible two-phase flows. J. Comput. Phys. 114, 146–159 (1994)

    Google Scholar 

  45. Tick, J., Pulkkinen, A., Tarvainen, T.: Modelling of errors due to speed of sound variations in photoacoustic tomography using a Bayesian framework. Biomed. Phys. Eng. Express 6(1), 015003 (2019)

    Google Scholar 

  46. Treeby, B.E., Cox, B.T.: k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Optics 15(2), 021314 (2010)

    Google Scholar 

  47. Van den Doel, K., Ascher, U.M., Leitao, A.: Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems. J. Sci. Comput. 43(1), 44–66 (2010)

    MathSciNet  Google Scholar 

  48. Wang, H., Alkhalifah, T.: Microseismic imaging using a source function independent full waveform inversion method. Geophys. J. Int. 214(1), 46–57 (2018)

    Google Scholar 

  49. Wang, K., Anastasio, M.A.: Photoacoustic and thermoacoustic tomography: image formation principles. In: Handbook of Mathematical Methods in Imaging. Springer, New York (2015)

  50. Wang, L.V., Wu, H.-I.: Biomedical Optics: Principles and Imaging. Wiley-Interscience, New Jersey (2007)

    Google Scholar 

  51. Xia, J., Yao, J., Wang, L.V.: Photoacoustic tomography: principles and advances. Electromagnetic Waves (Cambridge Mass.) 147, 1–22 (2014)

    Google Scholar 

  52. Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 041101 (2006)

    Google Scholar 

  53. Ye, M., Cao, M., Feng, T., Yuan, J., Cheng, Q., Liu, X., Xu, G., Wang, X.: Automatic speed of sound correction with photoacoustic image reconstruction. Photons Plus Ultrasound 9708, 601–606 (2016)

    Google Scholar 

  54. Yoon, C., Kang, J., Han, S., Yoo, Y., Song, T.-K., Chang, J.H: Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation. Optics Express 20(3), 3082–3090 (2012)

    Google Scholar 

  55. Zhang, J., Wang, K., Yang, Y., Anastasio., M.A.: Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm. In: Photons Plus Ultrasound: Imaging and Sensing 2008: the Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6856, pp. 68561F. International Society for Optics and Photonics (2008)

Download references

Acknowledgements

We would like to acknowledge Michigan State University HPCC for providing the computational resources that contributed to the research results reported here. Qian is partially supported by the NSF (Grant Nos. 2012046, 2152011, and 2309534). Yang is partially supported by the NSF (Grant Nos. DMS-1715178, DMS-2006881, and DMS-2237534), NIH (Grant No. R03-EB033521), and startup fund from Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Qian.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Dedicated to Prof. Stan Osher on the occasion of his 80th birthday.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Qian, J. & Yang, Y. Piecewise Acoustic Source Imaging with Unknown Speed of Sound Using a Level-Set Method. Commun. Appl. Math. Comput. 6, 1070–1095 (2024). https://doi.org/10.1007/s42967-023-00291-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-023-00291-9

Keywords

Mathematics Subject Classification

Navigation