Skip to main content
Log in

Dynamics of Advantageous Mutant Spread in Spatial Death-Birth and Birth-Death Moran Models

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

There is no data associated with this manuscript.

References

  1. Allen, B., Sample, C., Jencks, R., Withers, J., Steinhagen, P., Brizuela, L., Kolodny, J., Parke, D., Lippner, G., Dementieva, Y.A.: Transient amplifiers of selection and reducers of fixation for death-birth updating on graphs. PLoS Comput. Biol. 16(1), e1007529 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antal, T., Redner, S., Sood, V.: Evolutionary dynamics on degree-heterogeneous graphs. Phys. Rev. Lett. 96(18), 188104 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armitage, P., Doll, R.: The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8(1), 1–12 (1954)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armitage, P., Doll, R.: A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br. J. Cancer 11(2), 161–169 (1957)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K.W., Vogelstein, B., Nowak, M.A.: Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. 107(43), 18545–18550 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bramson, M., Griffeath, D.: On the Williams-Bjerknes tumour growth model. II. Math. Proc. Camb. Philos. Soc. 88(2), 339–357 (1980)

    Article  MathSciNet  Google Scholar 

  7. Bramson, M., Griffeath, D.: On the Williams-Bjerknes tumor growth model I. Ann. Probab. 9, 173–185 (1981)

    Article  MathSciNet  Google Scholar 

  8. Brock, C.K., Wallin, S.T., Ruiz, O.E., Samms, K.M., Mandal, A., Sumner, E.A.: Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nat. Commun. 10(1), 1–11 (2019)

    Article  CAS  Google Scholar 

  9. Broom, M., Rychtář, J.: An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2098), 2609–2627 (2008)

    ADS  MathSciNet  Google Scholar 

  10. Durrett, R.: Lecture Notes on Particle Systems and Percolation. Brooks/Cole Pub Co, Pacific Grove (1988)

    Google Scholar 

  11. Durrett, R.: Ten lectures on particle systems. In: Lectures on Probability Theory (Saint-Flour, 1993), Lecture Notes in Math., vol. 1608, pp. 97–201. Springer, Berlin (1995)

  12. Durrett, R.: Probability Models for DNA Sequence Evolution. Springer Science & Business Media, New York (2008)

    Book  Google Scholar 

  13. Durrett, R.: Probability—Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 49, 5th edn. Cambridge University Press, Cambridge (2019)

  14. Durrett, R., Foo, J., Leder, K.: Spatial Moran models, II: cancer initiation in spatially structured tissue. J. Math. Biol. 72(5), 1369–1400 (2016)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  15. Durrett, R., Griffeath, D.: Contact processes in several dimensions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 59, 535–552 (1982)

    Article  MathSciNet  Google Scholar 

  16. Durrett, R., Moseley, S.: Spatial Moran models I. Stochastic tunneling in the neutral case. Ann. Appl. Probab. 25(1), 104–115 (2015)

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  17. Foo, J., Gunnarsson, E.B., Leder, K., Storey, K.: Spread of premalignant mutant clones and cancer initiation in multilayered tissue. Ann. Appl. Probab. 33(1), 299–343 (2023)

    Article  MathSciNet  Google Scholar 

  18. Foo, J., Leder, K., Ryser, M.D.: Multifocality and recurrence risk: a quantitative model of field cancerization. J. Theoret. Biol. 355, 170–184 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Foo, J., Leder, K., Schweinsberg, J.: Mutation timing in a spatial model of evolution. Stoch. Process. Appl. 130(10), 6388–6413 (2020)

    Article  MathSciNet  Google Scholar 

  20. Fuchs, Y., Steller, H.: Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 16(6), 329–344 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gray, L.: Duality for general attractive spin systems with applications in one dimension. Ann. Probab. 14(2), 371–396 (1986)

    Article  MathSciNet  Google Scholar 

  22. Hindersin, L., Traulsen, A.: Most undirected random graphs are amplifiers of selection for birth-death dynamics, but suppressors of selection for death-birth dynamics. PLoS Comput. Biol. 11(11), e1004437 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Kaveh, K., Komarova, N.L., Kohandel, M.: The duality of spatial death-birth and birth-death processes and limitations of the isothermal theorem. R. Soc. Open Sci. 2(4), 140465 (2015)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  24. Kimura, M., Weiss, G.H.: The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49(4), 561 (1964)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knudson, A.G.: Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. 68(4), 820–823 (1971)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Knudson, A.: Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1(2), 157–161 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Komarova, N.L.: Spatial stochastic models for cancer initiation and progression. Bull. Math. Biol. 68(7), 1573–1599 (2006)

    Article  MathSciNet  PubMed  Google Scholar 

  28. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433(7023), 312–316 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Am. Math. Soc. 55(10), 961–962 (1949)

    Article  MathSciNet  Google Scholar 

  30. Maruyama, T.: On the fixation probability of mutant genes in a subdivided population. Genet. Res. 15(2), 221–225 (1970)

    Article  CAS  PubMed  Google Scholar 

  31. Maruyama, T.: A simple proof that certain quantities are independent of the geographical structure of population. Theor. Popul. Biol. 5, 148–154 (1974)

    Article  CAS  PubMed  Google Scholar 

  32. Masuda, N., Ohtsuki, H.: Evolutionary dynamics and fixation probabilities in directed networks. New J. Phys. 11(3), 033012 (2009)

    Article  ADS  Google Scholar 

  33. Moran, P.A.P.: Random processes in genetics. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 54, pp. 60–71. Cambridge University Press, Cambridge (1958)

  34. NIH National Cancer Institute.: SEER training cancer classification. https://training.seer.cancer.gov/disease/categories/classification.html

  35. Richter, H.: Spectral analysis of transient amplifiers for death-birth updating constructed from regular graphs. J. Math. Biol. 82(7), 61 (2021)

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  36. Sharma, N., Traulsen, A.: Suppressors of fixation can increase average fitness beyond amplifiers of selection. Proc. Natl. Acad. Sci. 119(37), e2205424119 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Slatkin, M.: Fixation probabilities and fixation times in a subdivided population. Evolution 164(2), 477–488 (1981)

    Article  Google Scholar 

  38. Sood, V., Antal, T., Redner, S.: Voter models on heterogeneous networks. Phys. Rev. E 77(4), 041121 (2008)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  39. Tkadlec, J., Pavlogiannis, A., Chatterjee, K., Nowak, M.A.: Limits on amplifiers of natural selection under death-birth updating. PLoS Comput. Biol. 16(1), e1007494 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams, T., Bjerknes, R.: Stochastic model for abnormal clone spread through epithelial basal layer. Nature 236(5340), 19–21 (1972)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript is dedicated to the memory of Ching-Shan Chou, our friend and colleague. We would like to acknowledge Rick Durrett for his insights on the dual process for the death-birth model during discussions at the Mathematical Biosciences Institute’s thematic program on cancer evolution (2014).

Funding

EBG and JF were supported in part by the NIH grant R01CA241134. EBG and KL were supported in part by the NSF grant CMMI-1552764. JF was supported in part by the NSF grants DMS-1349724 and DMS-2052465. DS was supported in part by the NSF grant CCF-1740761. JF and KL were supported in part by the U.S.-Norway Fulbright Foundation and the Research Council of Norway R &D Grant 309273. EBG was supported in part by the Norwegian Centennial Chair grant and the Doctoral Dissertation Fellowship from the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jasmine Foo or Einar Bjarki Gunnarsson.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foo, J., Gunnarsson, E.B., Leder, K. et al. Dynamics of Advantageous Mutant Spread in Spatial Death-Birth and Birth-Death Moran Models. Commun. Appl. Math. Comput. 6, 576–604 (2024). https://doi.org/10.1007/s42967-023-00278-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-023-00278-6

Keywords

Mathematics Subject Classification

Navigation