Skip to main content

Bound-Preserving Discontinuous Galerkin Methods with Modified Patankar Time Integrations for Chemical Reacting Flows

Abstract

In this paper, we develop bound-preserving discontinuous Galerkin (DG) methods for chemical reactive flows. There are several difficulties in constructing suitable numerical schemes. First of all, the density and internal energy are positive, and the mass fraction of each species is between 0 and 1. Second, due to the rapid reaction rate, the system may contain stiff sources, and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes. To obtain physically relevant numerical approximations, we apply the bound-preserving technique to the DG methods. Though traditional positivity-preserving techniques can successfully yield positive density, internal energy, and mass fractions, they may not enforce the upper bound 1 of the mass fractions. To solve this problem, we need to (i) make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density; (ii) choose conservative time integrations, such that the summation of the mass fractions is preserved. With the above two conditions, the positive mass fractions have summation 1, and then, they are all between 0 and 1. For time discretization, we apply the modified Runge-Kutta/multi-step Patankar methods, which are explicit for the flux while implicit for the source. Such methods can handle stiff sources with relatively large time steps, preserve the positivity of the target variables, and keep the summation of the mass fractions to be 1. Finally, it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations. The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces, while Patankar methods can keep the positivity of the pre-selected point values of the target variables. To match the degree of freedom, we use \(Q^k\) polynomials on rectangular meshes for problems in two space dimensions. To evolve in time, we first read the polynomials at the Gaussian points. Then, suitable slope limiters can be applied to enforce the positivity of the solutions at those points, which can be preserved by the Patankar methods, leading to positive updated numerical cell averages. In addition, we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux. Numerical examples are given to demonstrate the good performance of the proposed schemes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Burchard, H., Deleersnijder, E., Meister, A.: A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations. Appl. Numer. Math. 47, 1–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chuenjarern, N., Xu, Z., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes. J. Comput. Phys. 378, 110–128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comp. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comp. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25, 337–361 (1991)

    Article  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, J., Wang, C., Qian, C., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonation. SIAM J. Sci. Comput. 41, B250–B273 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, J., Yang, Y.: Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations. J. Comput. Phys. 395, 489–510 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, J., Yang, Y.: High-order bound-preserving finite difference methods for multispecies and multireaction detonations. Commun. Appl. Math. Comput. (2021). https://doi.org/10.1007/s42967-020-00117-y

  11. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, H., Yang, Y.: Bound-preserving discontinuous Galerkin method for compressible miscible displacement problem in porous media. SIAM J. Sci. Comput. 39, A1969–A1990 (2017)

    Article  MATH  Google Scholar 

  13. Huang, J., Izgin, T., Kopecz, S. , Meister, A., Shu, C.-W.: On the stability of strong-stability-preserving modified Patankar Runge-Kutta schemes. arXiv:2205.01488 (2022)

  14. Huang, J., Shu, C.-W.: Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 78, 1181–1839 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, J., Zhao, W., Shu, C.-W.: A third-order unconditionally positivity-preserving scheme for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 79, 1015–1056 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Izgin, T., Kopecz, S., Meister, A.: On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar-Runge-Kutta schemes. ESAIM Math. Model. Numer. Anal. 56, 1053–1080 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Izgin, T., Kopecz, S., Meister, A.: On the stability of unconditionally positive and linear invariants preserving time integration schemes. arXiv:2202.11649 (2022)

  18. Izgin, T., Öffner, P.: On the stability of modified Patankar methods. arXiv:2206.07371 (2022)

  19. Kopecz, S., Meister, A.: On order conditions for modified Patankar-Runge-Kutta schemes. Appl. Numer. Math. 123, 159–179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopecz, S., Meister, A.: Unconditionally positive and conservative third order modified Patankar-Runge-Kutta discretizations of production-destruction systems. BIT Numer. Math. 58, 691–728 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lv, Y., Ihme, M.: High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows. Acta Mechanica Sinica 33, 486–499 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Öffner, P., Torlo, D.: Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153, 15–34 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, London (1980)

    MATH  Google Scholar 

  25. Reed, W.H., Hill, T.R.: Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory Report LA-UR-73-479. Los Alamos, NM (1973)

  26. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Stat. Sci. Comput. 9, 1073–1084 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, W., Shu, C.-W., Yee, H.C., Sjogreen, B.: High order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 228, 6682–6702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, X.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations. J. Comput. Phys. 328, 301–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Huang.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The work of Fangyao Zhu and Yang Yang was supported by the NSF under Grant DMS-1818467 and Simons Foundation under Grant 961585.

Rights and permissions

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Huang, J. & Yang, Y. Bound-Preserving Discontinuous Galerkin Methods with Modified Patankar Time Integrations for Chemical Reacting Flows. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-022-00231-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-022-00231-z

Keywords

  • Compressible Euler equations
  • Chemical reacting flows
  • Bound-preserving
  • Discontinuous Galerkin (DG) method
  • Modified Patankar method

Mathematics Subject Classification

  • 65M60