Skip to main content
Log in

Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

Fourier continuation (FC) is an approach used to create periodic extensions of non-periodic functions to obtain highly-accurate Fourier expansions. These methods have been used in partial differential equation (PDE)-solvers and have demonstrated high-order convergence and spectrally accurate dispersion relations in numerical experiments. Discontinuous Galerkin (DG) methods are increasingly used for solving PDEs and, as all Galerkin formulations, come with a strong framework for proving the stability and the convergence. Here we propose the use of FC in forming a new basis for the DG framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ainsworth, M.: Dispersive and dissipative behavior of high-order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albin, N., Bruno, O.P.: A spectral FC solver for the compressible Navier-Stokes equations in general domains I: explicit time-stepping. J. Comput. Phys. 230(16), 6248–6270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albin, N., Bruno, O.P., Cheung, T.Y., Cleveland, R.O.: Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams. J. Acoust. Soc. Am. 132(4), 2371–2387 (2012)

    Article  Google Scholar 

  4. Albin, N., Pathmanathan, S.: Discrete periodic extension using an approximate step function. SIAM J. Sci. Comput. 36(2), A668–A692 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Appelö, D., Bokil, V.A., Cheng, Y., Li, F.: Energy stable SBP-FDTD methods for Maxwell-Duffing models in nonlinear photonics. IEEE J. Multiscale Multiphys. Comput. Tech. 4, 329–336 (2019)

    Article  Google Scholar 

  6. Boyd, J.P.: A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds. J. Comput. Phys. 178(1), 118–160 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruno, O.P., Lyon, M.: High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements. J. Comput. Phys. 229(6), 2009–2033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruno, O.P., Prieto, A.: Spatially dispersionless, unconditionally stable FC-AD solvers for variable-coefficient PDEs. J. Sci. Comput. 58, 331–366 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Shu, C-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2013)

    Google Scholar 

  12. Fornberg, B., Reeger, J.: An improved Gregory-like method for 1-D quadrature. Numer. Math. 141, 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Gustafsson, B., Kreiss, H., Oliger, J.: Time Dependent Problems and Difference Methods. Pure and Applied Mathematics. Wiley, New York (1995)

    MATH  Google Scholar 

  14. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids—I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, vol. 54. Springer, New York (2008)

    MATH  Google Scholar 

  16. Huybrechs, D.: On the Fourier extension of nonperiodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191(1), 249–264 (2003)

    Article  MATH  Google Scholar 

  18. Kopriva, D.A.: Stability of overintegration methods for nodal discontinuous Galerkin spectral element methods. J. Sci. Comput. 76(1), 426–442 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kronbichler, M., Kormann, K.: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Trans. Math. Softw. 45(3), 1–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lyon, M.: A fast algorithm for Fourier continuation. SIAM J. Sci. Comput. 33, 3241–3260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lyon, M., Bruno, O.P.: High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations. J. Comput. Phys. 229, 3358–3381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Persson, P.O.: A sparse and high-order accurate line-based discontinuous Galerkin method for unstructured meshes. J. Comput. Phys. 233, 414–429 (2013)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Appelö.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This work was supported by the National Science Foundation Grant DMS-1913076. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Sande, K., Appelö, D. & Albin, N. Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems. Commun. Appl. Math. Comput. 5, 1385–1405 (2023). https://doi.org/10.1007/s42967-022-00205-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00205-1

Keywords

Mathematics Subject Classification

Navigation