Skip to main content
Log in

Hybrid High-Order Methods for the Acoustic Wave Equation in the Time Domain

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We devise hybrid high-order (HHO) methods for the acoustic wave equation in the time domain. We first consider the second-order formulation in time. Using the Newmark scheme for the temporal discretization, we show that the resulting HHO-Newmark scheme is energy-conservative, and this scheme is also amenable to static condensation at each time step. We then consider the formulation of the acoustic wave equation as a first-order system together with singly-diagonally implicit and explicit Runge-Kutta (SDIRK and ERK) schemes. HHO-SDIRK schemes are amenable to static condensation at each time step. For HHO-ERK schemes, the use of the mixed-order formulation, where the polynomial degree of the cell unknowns is one order higher than that of the face unknowns, is key to benefit from the explicit structure of the scheme. Numerical results on test cases with analytical solutions show that the methods can deliver optimal convergence rates for smooth solutions of order \(\mathcal{O}(h^{k+1})\) in the \(H^1\)-norm and of order \(\mathcal{O}(h^{k+2})\) in the \(L^2\)-norm. Moreover, test cases on wave propagation in heterogeneous media indicate the benefits of using high-order methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abbas, M., Ern, A., Pignet, N.: Hybrid high-order methods for finite deformations of hyperelastic materials. Comput. Mech. 62(4), 909–928 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbas, M., Ern, A., Pignet, N.: A hybrid high-order method for incremental associative plasticity with small deformations. Comput. Methods Appl. Mech. Eng. 346, 891–912 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angel, J.B., Banks, J.W., Henshaw, W.D.: High-order upwind schemes for the wave equation on overlapping grids: Maxwell’s equations in second-order form. J. Comput. Phys. 352, 534–567 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Appelö, D., Hagstrom, T.: A new discontinuous Galerkin formulation for wave equations in second-order form. SIAM J. Numer. Anal. 53(6), 2705–2726 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banks, J.W., Hagstrom, T., Jacangelo, J.: Galerkin differences for acoustic and elastic wave equations in two space dimensions. J. Comput. Phys. 372, 864–892 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bécache, E., Joly, P., Tsogka, C.: An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM J. Numer. Anal. 37(4), 1053–1084 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Botti, L., Di Pietro, D.A., Droniou, J.: A hybrid high-order method for the incompressible Navier-Stokes equations based on Temam’s device. J. Comput. Phys. 376, 786–816 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Botti, M., Di Pietro, D.A., Sochala, P.: A hybrid high-order method for nonlinear elasticity. SIAM J. Numer. Anal. 55(6), 2687–2717 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burman, E., Duran, O., Ern, A., Steins, M.: Convergence analysis of hybrid high-order methods for the wave equation. J. Sci. Comput. (2021). https://hal.archives-ouvertes.fr/hal-02922720

  11. Burman, E., Ern, A.: An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56(3), 1525–1546 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burman, E., Ern, A., Fernández, M.A.: Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal. 48(6), 2019–2042 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calo, V., Cicuttin, M., Deng, Q., Ern, A.: Spectral approximation of elliptic operators by the hybrid high-order method. Math. Comput. 88(318), 1559–1586 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cascavita, K.L., Bleyer, J., Chateau, X., Ern, A.: Hybrid discretization methods with adaptive yield surface detection for Bingham pipe flows. J. Sci. Comput. 77(3), 1424–1443 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chave, F., Di Pietro, D., Lemaire, S.: A three-dimensional hybrid high-order method for magnetostatics (2020). https://hal.archives-ouvertes.fr/hal-02407175

  16. Chou, C.-S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44(5), 2131–2158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cicuttin, M., Di Pietro, D.A., Ern, A.: Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. J. Comput. Appl. Math. 344, 852–874 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model Numer. Anal. 50(3), 635–650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Fu, Z., Hungria, A., Ji, L., Sánchez, M.A., Sayas, F.-J.: Stormer-Numerov HDG methods for acoustic waves. J. Sci. Comput. 75(2), 597–624 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38(6), 2047–2078 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  24. Di Pietro, D.A., Droniou, J., Manzini, G.: Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355, 397–425 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ezziani, A., Joly, P.: Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems. J. Comput. Appl. Math. 234(6), 1886–1895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36(3), 935–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Giraldo, F.X., Taylor, M.A.: A diagonal-mass-matrix triangular-spectral-element method based on cubature points. J. Eng. Math. 56(3), 307–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Griesmaier, R., Monk, P.: Discretization of the wave equation using continuous elements in time and a hybridizable discontinuous Galerkin method in space. J. Sci. Comput. 58(2), 472–498 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Krenk, S.: Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Eng. 195(44/45/46/47), 6110–6124 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kronbichler, M., Schoeder, S., Müller, C., Wall, W.A.: Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer. Methods Eng. 106(9), 712–739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications, vols. I, II. Springer, New York (1972) (Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181-182)

  37. Marazzato, F., Ern, A., Mariotti, C., Monasse, L.: An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics. Comput. Methods Appl. Mech. Eng. 347, 906–927 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22(23), 443–477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695–3718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sánchez, M.A., Ciuca, C., Nguyen, N.C., Peraire, J., Cockburn, B.: Symplectic Hamiltonian HDG methods for wave propagation phenomena. J. Comput. Phys. 350, 951–973 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sjögreen, B., Petersson, N.A.: A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. J. Sci. Comput. 52(1), 17–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45, 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Virta, K., Mattsson, K.: Acoustic wave propagation in complicated geometries and heterogeneous media. J. Sci. Comput. 61(1), 90–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L. Guillot (CEA/DAM) for insightful discussions and CEA/DAM for partial financial support. EB was partially supported by the EPSRC grants EP/P01576X/1 and EP/P012434/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Ern.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burman, E., Duran, O. & Ern, A. Hybrid High-Order Methods for the Acoustic Wave Equation in the Time Domain. Commun. Appl. Math. Comput. 4, 597–633 (2022). https://doi.org/10.1007/s42967-021-00131-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00131-8

Keywords

Mathematics Subject Classification

Navigation