Abstract
This paper formulates an efficient numerical method for solving the convection diffusion solute transport equations coupled to blood flow equations in vessel networks. The reduced coupled model describes the variations of vessel cross-sectional area, radially averaged blood momentum and solute concentration in large vessel networks. For the discretization of the reduced transport equation, we combine an interior penalty discontinuous Galerkin method in space with a novel locally implicit time stepping scheme. The stability and the convergence are proved. Numerical results show the impact of the choice for the steady-state axial velocity profile on the numerical solutions in a fifty-five vessel network with physiological boundary data.
Similar content being viewed by others
References
Alastruey, J., Parker, K.H., Sherwin, S.J.: Arterial pulse wave haemodynamics. In: 11th International Conference on Pressure Surges, vol. 30, pp. 401–443. Virtual PiE Led t/a BHR Group Lisbon, Portugal (2012)
Azer, K.: Taylor diffusion in time dependent flow. Int. J. Heat Mass Transf. 48(13), 2735–2740 (2005)
Barnard, A., Hunt, W., Timlake, W., Varley, E.: A theory of fluid flow in compliant tubes. Biophys. J. 6(6), 717–724 (1966)
Boileau, E., Nithiarasu, P., Blanco, P.J., Müller, L.O., Fossan, F.E., Hellevik, L.R., Donders, W.P., Huberts, W., Willemet, M., Alastruey, J.: A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Methods Biomed. Eng. 31(10), e02732 (2015)
Calamante, F., Gadian, D.G., Connelly, A.: Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn. Reson. Med. 44(3), 466–473 (2000)
Čanić, S., Kim, E.H.: Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math. Methods Appl. Sci. 26(14), 1161–1186 (2003)
Cheng, Y., Shu, C.W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)
Cockburn, B., Shu, C.W.: TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)
D’Angelo, C.: Multiscale modelling of metabolism and transport phenomena in living tissues. Tech. rep., EPFL (2007)
D’Angelo, C., Quarteroni, A.: On the coupling of 1D and 3D diffusion-reaction equations: application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(08), 1481–1504 (2008)
Dolejší, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech. Eng. 196(29/30), 2813–2827 (2007)
Formaggia, L., Lamponi, D., Quarteroni, A.: One dimensional models for blood flow in arteries. J. Eng. Math. 47(3/4), 251–276 (2003)
Köppl, T., Schneider, M., Pohl, U., Wohlmuth, B.: The influence of an unilateral carotid artery stenosis on brain oxygenation. Med. Eng. Phys. 36(7), 905–914 (2014)
Köppl, T., Wohlmuth, B., Helmig, R.: Reduced one-dimensional modelling and numerical simulation for mass transport in fluids. Int. J. Numer. Methods Fluids 72(2), 135–156 (2013)
Marbach, S., Alim, K.: Active control of dispersion within a channel with flow and pulsating walls. Phys. Rev. Fluids 4(11), 114202 (2019)
Marbach, S., Alim, K., Andrew, N., Pringle, A., Brenner, M.P.: Pruning to increase Taylor dispersion in physarum polycephalum networks. Phys. Rev. Lett. 117(17), 178103 (2016)
Masri, R., Puelz, C., Riviere, B.: A reduced model for solute transport in compliant blood vessels with arbitrary axial velocity profile. International Journal of Heat and Mass Transfer 176, 121379 (2021)
Mynard, J.P., Smolich, J.J.: One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Ann. Biomed. Eng. 43(6), 1443–1460 (2015)
Ozisik, S., Riviere, B., Warburton, T.: On the constants in inverse inequalities in L2. Tech. rep. (2010)
Puelz, C., Čanić, S., Riviere, B., Rusin, C.G.: Comparison of reduced models for blood flow using Runge Kutta discontinuous Galerkin methods. Appl. Numer. Math. 115, 114–141 (2017)
Reichold, J., Stampanoni, M., Keller, A.L., Buck, A., Jenny, P., Weber, B.: Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29(8), 1429–1443 (2009)
Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)
Sherwin, S., Formaggia, L., Peiro, J., Franke, V.: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43(6–7), 673–700 (2003)
Taylor, G.I.: Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. A 225(1163), 473–477 (1954)
Wang, H., Shu, C.W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)
Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003)
Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004)
Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. SIAM J. Numer. Anal. 44(4), 1703–1720 (2006)
Acknowledgements
Puelz was supported in part by the Research Training Group in Modeling and Simulation funded by NSF via grant RTG/DMS-1646339. Riviere acknowledged the support of NSF via Grant DMS 1913291.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Appendix A
Appendix A
1.1 A.1 Proof of Lemma 2
Let \(\phi _h \in {\mathbb {V}}_h^k\). For readability, let \(u = C_h^n\) and \(v = C_h^{n+1}\). We have
Using a Taylor expansion and assumption (61), there exists \(\xi \) between u and v such that
Thus, using Cauchy-Schwarz, the first term is bounded by
To bound the second term, we write
Using bound (62), we obtain
Using trace inequality (65), we attain
The same bound on the second sum in (A 3) holds. Combining (A 2) and (A 4) yields the result.
1.2 A.2 Proof of Lemma 4
Let \(u,v \in {\mathbb {V}}_h^k\), then
First, we consider the interior points and fix \(1\leqslant e \leqslant N\). We employ the trace inequality (65) and inverse inequality (66) to obtain a bound on the first term:
The second term is bounded by the inverse inequality (66):
which becomes (using a simple inequality)
For the third term, we have
For the boundary terms, similar arguments result in the following bounds:
Similar bounds hold for \(e=N+1\). Using the Cauchy-Schwarz’s inequality, we obtain
with
1.3 A.3 Proof of Bound (94)
To bound the last term, we use the following trace inequality for functions in \(H^1(I_e)\) [22]:
The last term appearing in the convergence proof is
The first term is bounded by (A 2) and the triangle inequality:
We bound the second term using the Lipschitz continuity assumption on \(f^{nf}\) (62) and the triangle inequality:
Using the trace inequalities (65) and (A 5), we obtain
Using the approximation results of the elliptic projection (82) and (83), we obtain
The final bound, (94), is attained by an application of Young’s inequality.
1.4 A.4 Parameters for Fifty-Five Vessel Network
Vessel name | L, cm | \(A_0, \text {cm}^2\) | \(\beta \), \( \text {dyn}/\text {cm}^3\) | \(R_2\), \(\text {dyn.s}/\text {cm}^5\) | \(C_{\mathrm{cap}}\), \(\text {cm}^{5}/\text {dyn}\) | |
---|---|---|---|---|---|---|
1 | Ascending Aorta | 4.0 | 5.983 | 97 000 | – | – |
2 | Aortic Arch I | 2.0 | 5.147 | 87 000 | – | – |
3 | Brachiocephalic | 3.4 | 1.219 | 233 000 | – | – |
4 | R. Subclavian I | 3.4 | 0.562 | 423 000 | – | – |
5 | R. Carotid | 17.7 | 0.432 | 516 000 | – | – |
6 | R. Vertebral | 14.8 | 0.123 | 2 590 000 | 72 417 | \(3.129 \times 10^{-6}\) |
7 | R. Subclavian II | 42.2 | 0.510 | 466 000 | – | – |
8 | R. Radial | 23.5 | 0.106 | 2 866 000 | 46 155 | \(4.909 \times 10^{-6}\) |
9 | R. Ulnar I | 6.7 | 0.145 | 2 246 000 | – | – |
10 | R. Interosseous | 7.9 | 0.031 | 12 894 000 | 191 252 | \(1.185 \times 10^{-6}\) |
11 | R. Ulnar II | 17.1 | 0.133 | 2 446 000 | 46 995 | \(4.821 \times 10^{-6}\) |
12 | R. Internal Carotid | 17.6 | 0.121 | 2 644 000 | 23 041 | \(9.833 \times 10^{-6}\) |
13 | R. External Carotid | 17.7 | 0.121 | 2 467 000 | 37 563 | \(6.032 \times 10^{-6}\) |
14 | Aortic Arch II | 3.9 | 3.142 | 130 000 | – | – |
15 | L. Carotid | 20.8 | 0.430 | 519 000 | – | – |
16 | L. Internal Carotid | 17.6 | 0.121 | 2 644 000 | 23 118 | \(9.801 \times 10^{-6}\) |
17 | L. External Carotid | 17.7 | 0.121 | 2 467 000 | 37 696 | \(6.011 \times 10^{-6}\) |
18 | Thoracic Aorta I | 5.2 | 3.142 | 124 000 | – | – |
19 | L. Subclavian I | 3.4 | 0.562 | 416 000 | – | – |
20 | Vertebral | 14.8 | 0.123 | 2 590 000 | 76 972 | \(2.944 \times 10^{-6}\) |
21 | L. Subclavian II | 42.2 | 0.510 | 466 000 | – | – |
22 | L. Radial | 23.5 | 0.106 | 2 866 000 | 45 329 | \(4.998 \times 10^{-6}\) |
23 | L. Ulnar I | 6.7 | 0.145 | 2 246 000 | – | – |
24 | L. Interosseous | 7.9 | 0.031 | 12 894 000 | 191 945 | \(1.180 \times 10^{-6}\) |
25 | L. Ulnar II | 17.1 | 0.133 | 2 246 000 | 47 905 | \(4.730 \times 10^{-6}\) |
26 | Intercostals | 8.0 | 0.196 | 885 000 | 996 508 | \(2.274 \times 10^{-6}\) |
27 | Thoracic Aorta II | 10.4 | 3.017 | 117 000 | – | – |
28 | Abdominal I | 5.3 | 1.911 | 167 000 | – | – |
29 | Celiac I | 2.0 | 0.478 | 475 000 | – | – |
30 | Celiac II | 1.0 | 0.126 | 1 805 000 | – | – |
31 | Hepatic | 6.6 | 0.152 | 1 142 000 | 13 394 | \(1.692\times 10^{-5}\) |
32 | Gastric | 7.1 | 0.102 | 1 567 000 | 1 373 574 | \(1.650\times 10^{-7}\) |
33 | Splenic | 6.3 | 0.238 | 806 000 | 18 933 | \(1.197 \times 10^{-5}\) |
34 | Superior Mesenteric | 5.9 | 0.430 | 569 000 | 8 728 | \(2.596 \times 10^{-5}\) |
35 | Abdominal II | 1.0 | 1.247 | 227 000 | – | – |
36 | L. Renal | 3.2 | 0.332 | 566 000 | 9 051 | \(2.503 \times 10^{-5}\) |
37 | Abdominal III | 1.0 | 1.021 | 278 000 | – | – |
38 | R. Renal | 3.2 | 0.159 | 1 181 000 | 9 082 | \(2.495 \times 10^{-5}\) |
39 | Abdominal IV | 10.6 | 0.697 | 381 000 | – | – |
40 | Inferior Mesenteric | 5.0 | 0.08 | 1 895 000 | 95 652 | \(2.369\times 10^{-6}\) |
41 | Abdominal V | 1.0 | 0.578 | 399 000 | – | – |
42 | R. Common Iliac | 5.9 | 0.328 | 649 000 | – | – |
43 | L. Common Iliac | 5.8 | 0.328 | 649 000 | – | – |
44 | L. External Iliac | 14.4 | 0.252 | 1 493 000 | – | – |
45 | L. Internal Iliac | 5.0 | 0.181 | 3 134 000 | 16 632 | \(1.362 \times 10^{-5}\) |
46 | L. Femoral | 44.3 | 0.139 | 2 559 000 | – | – |
47 | L. Deep Femoral | 12.6 | 0.126 | 2 652 000 | 13 715 | \(1.652 \times 10^{-5}\) |
48 | L. Posterior Tibial | 32.1 | 0.110 | 5 808 000 | 84 662 | \(2.676 \times 10^{-6}\) |
49 | L. Anterior Tibial | 34.3 | 0.060 | 9 243 000 | 98 131 | \(2.309 \times 10^{-6}\) |
50 | R. External Iliac | 14.5 | 0.252 | 1 493 000 | – | – |
51 | R. Internal Iliac | 5.1 | 0.181 | 3 134 000 | 16 582 | \(1.366 \times 10^{-5}\) |
52 | R. Femoral | 44.4 | 0.139 | 2 559 000 | – | – |
53 | R. Deep Femoral | 12.7 | 0.126 | 2 652 000 | 13 707 | \(1.653 \times 10^{-5} \) |
54 | R. Posterior Tibial | 32.2 | 0.110 | 5 808 000 | 84 625 | \(2.677 \times 10^{-6}\) |
55 | R. Anterior Tibial | 34.4 | 0.060 | 9 243 000 | 98 100 | \(2.310 \times 10^{-6}\) |
Rights and permissions
About this article
Cite this article
Masri, R., Puelz, C. & Riviere, B. A Discontinuous Galerkin Method for Blood Flow and Solute Transport in One-Dimensional Vessel Networks. Commun. Appl. Math. Comput. 4, 500–529 (2022). https://doi.org/10.1007/s42967-021-00126-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42967-021-00126-5
Keywords
- Reduced models
- Blood flow
- Solute transport
- Coriolis coefficient
- Vessel networks
- Junction conditions
- Locally implicit