Skip to main content
Log in

A Discontinuous Galerkin Method for Blood Flow and Solute Transport in One-Dimensional Vessel Networks

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

This paper formulates an efficient numerical method for solving the convection diffusion solute transport equations coupled to blood flow equations in vessel networks. The reduced coupled model describes the variations of vessel cross-sectional area, radially averaged blood momentum and solute concentration in large vessel networks. For the discretization of the reduced transport equation, we combine an interior penalty discontinuous Galerkin method in space with a novel locally implicit time stepping scheme. The stability and the convergence are proved. Numerical results show the impact of the choice for the steady-state axial velocity profile on the numerical solutions in a fifty-five vessel network with physiological boundary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alastruey, J., Parker, K.H., Sherwin, S.J.: Arterial pulse wave haemodynamics. In: 11th International Conference on Pressure Surges, vol. 30, pp. 401–443. Virtual PiE Led t/a BHR Group Lisbon, Portugal (2012)

  2. Azer, K.: Taylor diffusion in time dependent flow. Int. J. Heat Mass Transf. 48(13), 2735–2740 (2005)

    Article  Google Scholar 

  3. Barnard, A., Hunt, W., Timlake, W., Varley, E.: A theory of fluid flow in compliant tubes. Biophys. J. 6(6), 717–724 (1966)

    Article  Google Scholar 

  4. Boileau, E., Nithiarasu, P., Blanco, P.J., Müller, L.O., Fossan, F.E., Hellevik, L.R., Donders, W.P., Huberts, W., Willemet, M., Alastruey, J.: A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Methods Biomed. Eng. 31(10), e02732 (2015)

    Article  MathSciNet  Google Scholar 

  5. Calamante, F., Gadian, D.G., Connelly, A.: Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn. Reson. Med. 44(3), 466–473 (2000)

    Article  Google Scholar 

  6. Čanić, S., Kim, E.H.: Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math. Methods Appl. Sci. 26(14), 1161–1186 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cheng, Y., Shu, C.W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cockburn, B., Shu, C.W.: TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  9. D’Angelo, C.: Multiscale modelling of metabolism and transport phenomena in living tissues. Tech. rep., EPFL (2007)

  10. D’Angelo, C., Quarteroni, A.: On the coupling of 1D and 3D diffusion-reaction equations: application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(08), 1481–1504 (2008)

    Article  MathSciNet  Google Scholar 

  11. Dolejší, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech. Eng. 196(29/30), 2813–2827 (2007)

    Article  MathSciNet  Google Scholar 

  12. Formaggia, L., Lamponi, D., Quarteroni, A.: One dimensional models for blood flow in arteries. J. Eng. Math. 47(3/4), 251–276 (2003)

    Article  MathSciNet  Google Scholar 

  13. Köppl, T., Schneider, M., Pohl, U., Wohlmuth, B.: The influence of an unilateral carotid artery stenosis on brain oxygenation. Med. Eng. Phys. 36(7), 905–914 (2014)

    Article  Google Scholar 

  14. Köppl, T., Wohlmuth, B., Helmig, R.: Reduced one-dimensional modelling and numerical simulation for mass transport in fluids. Int. J. Numer. Methods Fluids 72(2), 135–156 (2013)

    Article  MathSciNet  Google Scholar 

  15. Marbach, S., Alim, K.: Active control of dispersion within a channel with flow and pulsating walls. Phys. Rev. Fluids 4(11), 114202 (2019)

    Article  Google Scholar 

  16. Marbach, S., Alim, K., Andrew, N., Pringle, A., Brenner, M.P.: Pruning to increase Taylor dispersion in physarum polycephalum networks. Phys. Rev. Lett. 117(17), 178103 (2016)

    Article  Google Scholar 

  17. Masri, R., Puelz, C., Riviere, B.: A reduced model for solute transport in compliant blood vessels with arbitrary axial velocity profile. International Journal of Heat and Mass Transfer 176, 121379 (2021)

  18. Mynard, J.P., Smolich, J.J.: One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Ann. Biomed. Eng. 43(6), 1443–1460 (2015)

    Article  Google Scholar 

  19. Ozisik, S., Riviere, B., Warburton, T.: On the constants in inverse inequalities in L2. Tech. rep. (2010)

  20. Puelz, C., Čanić, S., Riviere, B., Rusin, C.G.: Comparison of reduced models for blood flow using Runge Kutta discontinuous Galerkin methods. Appl. Numer. Math. 115, 114–141 (2017)

    Article  MathSciNet  Google Scholar 

  21. Reichold, J., Stampanoni, M., Keller, A.L., Buck, A., Jenny, P., Weber, B.: Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29(8), 1429–1443 (2009)

    Article  Google Scholar 

  22. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  23. Sherwin, S., Formaggia, L., Peiro, J., Franke, V.: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43(6–7), 673–700 (2003)

    Article  MathSciNet  Google Scholar 

  24. Taylor, G.I.: Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. A 225(1163), 473–477 (1954)

    Article  Google Scholar 

  25. Wang, H., Shu, C.W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. SIAM J. Numer. Anal. 44(4), 1703–1720 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Puelz was supported in part by the Research Training Group in Modeling and Simulation funded by NSF via grant RTG/DMS-1646339. Riviere acknowledged the support of NSF via Grant DMS 1913291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Riviere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A

Appendix A

1.1 A.1 Proof of Lemma 2

Let \(\phi _h \in {\mathbb {V}}_h^k\). For readability, let \(u = C_h^n\) and \(v = C_h^{n+1}\). We have

$$\begin{aligned}&\sum _{e=0}^{N} \left( {\mathcal {J}}_e(u,\phi _h) - {\mathcal {J}}_e(v,\phi _h) \right) \nonumber \\&=\sum _{e=0}^N \int _{x_e}^{x_{e+1}} (f(u)-f(v)) \partial _x \phi _h \mathrm{d}x + \sum _{e=0}^{N+1} \left( f^{nf}(u)\vert _{x_e} - f^{nf}(v)\vert _{x_e}\right) [\phi _h]\vert _{x_e}. \end{aligned}$$
(A 1)

Using a Taylor expansion and assumption (61), there exists \(\xi \) between u and v such that

$$\begin{aligned} |f(u) - f(v) | = |f'(\xi )| |u-v| \leqslant L_1|u-v|. \end{aligned}$$

Thus, using Cauchy-Schwarz, the first term is bounded by

$$\begin{aligned}&\left| \sum _{e=0}^N \int _{x_e}^{x_{e+1}} (f(u)-f(v)) \partial _x \phi _h \mathrm{d}x \right| \nonumber \\&\leqslant L_1 \Vert u-v \Vert \,\,\left( \sum _e \Vert \partial _x \phi _h \Vert _{L^2(I_e)}^2\right) ^{1/2} \leqslant L_1 a_0^{-1/2} \Vert u-v\Vert \,\, \Vert \phi _h \Vert _{\mathrm{DG}}. \end{aligned}$$
(A 2)

To bound the second term, we write

$$\begin{aligned}&\sum _{e=0}^{N+1} \vert \left( f^{nf}(u)\vert _{x_e} - f^{nf} (v)\vert _{x_e} \right) \vert \, \vert [\phi _h]\vert _{x_e} \vert \\&= \sum _{e=1}^N \vert f^{nf}(u(x_e^-),u(x_e^+)) - f^{nf}(v(x_e^-),v(x_e^+))\vert \, \vert [\phi _h]\vert _{x_e} \vert \\&+\vert f^{nf}(C_{\mathrm{in}}(t_n),u(x_0^+))-f^{nf}(C_{\mathrm{in}}(t_{n+1}),v(x_0^+))\vert \, \vert [\phi _h]\vert _{x_0}\vert \\&+\vert f^{nf}(u(x_{N+1}^-),C_{\mathrm{out}}(t_n))-f^{nf}(v(x_{N+1}^-),C_{\mathrm{out}}(t_{n+1})\vert \, \vert [\phi _h]\vert _{x_{N+1}}\vert . \end{aligned}$$

Using bound (62), we obtain

$$\begin{aligned}&\sum _{e=0}^{N+1} \vert \left( f^{nf}(u)\vert _{x_e} - f^{nf} (v)\vert _{x_e} \right) \vert \, \vert [\phi _h]\vert _{x_e} \vert \nonumber \\&\leqslant \sum _{e=1}^{N+1} L_2 |u(x_e^-)-v(x_e^-)|\vert [\phi _h]\vert _{x_e} \vert +\sum _{e=0}^{N} L_2|u(x_e^+)-v(x_e^+)| \, \vert [\phi _h]\vert _{x_e} \vert \nonumber \\&+ L_2 \vert C_{\mathrm{in}}(t_n) - C_{\mathrm{in}}(t_{n+1})\vert \, \vert [\phi _h]\vert _{x_0}\vert + L_2 \vert C_{\mathrm{out}}(t_n) - C_{\mathrm{out}}(t_{n+1}) \vert \, \vert [\phi _h]\vert _{x_{N+1}}\vert . \end{aligned}$$
(A 3)

Using trace inequality (65), we attain

$$\begin{aligned}&\sum _{e=1}^{N+1} L_2 |u(x_e^-)-v(x_e^-)|\vert [\phi _h]\vert _{x_e} \vert \nonumber \\&\leqslant \sum _{e=0}^{N} L_2\sigma ^{-1/2}(k+1) \Vert u - v \Vert _{L^2(I_e)} |,\sigma ^{1/2} h^{-1/2}[\phi _h]|_{x_e}|, \nonumber \\&\leqslant \left( \sum _{e=0}^{N} L_2^2 \sigma ^{-1}(k+1)^2 \Vert u-v\Vert ^2_{L^{2}(I_e)} \right) ^{1/2} \left( \sum _{e=0}^{N} \sigma h^{-1} [\phi _h]^2 \vert _{x_e} \right) ^{1/2}, \nonumber \\&\leqslant L_2 \sigma ^{-1/2}(k+1) \Vert u-v\Vert \,\, \Vert \phi _h \Vert _{\mathrm{DG}}. \end{aligned}$$
(A 4)

The same bound on the second sum in (A 3) holds. Combining (A 2) and (A 4) yields the result.

1.2 A.2 Proof of Lemma 4

Let \(u,v \in {\mathbb {V}}_h^k\), then

$$\begin{aligned} {\mathcal {B}}(u,v)= \sum _{e=0}^{N+1} \left( \{a\, \partial _x u \}\vert _{x_e}[v]\vert _{x_e} -\epsilon \{ a\,\partial _x v \}\vert _{x_e} [ u]\vert _{x_e} +\frac{\sigma }{h} [u]\vert _{x_e}[v]\vert _{x_e} \right) . \end{aligned}$$

First, we consider the interior points and fix \(1\leqslant e \leqslant N\). We employ the trace inequality (65) and inverse inequality (66) to obtain a bound on the first term:

$$\begin{aligned} |\{a\, \partial _x u \}\vert _{x_e}[v]\vert _{x_e}| \leqslant a_1 M_k^{1/2}k h^{-3/2} |[v]\vert _{x_e}| \, (\Vert u \Vert _{L^2(I_e)} + \Vert u \Vert _{L^2(I_{e-1})}). \end{aligned}$$

The second term is bounded by the inverse inequality (66):

$$\begin{aligned} |\epsilon \{a\partial _x v \}_{x_e}[u]_{x_e}|&\leqslant |\epsilon | \frac{a_1}{2 \sqrt{a_0}} k(k+1) h^{-1} \left( \Vert u \Vert _{L^2(I_e)} + \Vert u \Vert _{L^2(I_{e-1})}\right) \\&\quad \times \left( \Vert a^{1/2} \partial _x v \Vert _{L^2(I_e)} + \Vert a^{1/2} \partial _x v \Vert _{L^2(I_{e-1})}\right) , \end{aligned}$$

which becomes (using a simple inequality)

$$\begin{aligned} |\epsilon \{a\partial _x v \}_{x_e}[u]_{x_e}|&\leqslant |\epsilon |\frac{a_1}{\sqrt{2 a_0}} k(k+1) h^{-1} \left( \Vert u \Vert _{L^2(I_e)} + \Vert u \Vert _{L^2(I_{e-1})}\right) \\&\quad \times \left( \Vert a^{1/2} \partial _x v \Vert _{L^2(I_e)}^2 + \Vert a^{1/2} \partial _x v \Vert _{L^2(I_{e-1})}^2\right) ^{1/2}. \end{aligned}$$

For the third term, we have

$$\begin{aligned} \bigg \vert \frac{\sigma }{h} [u]\bigg \vert _{x_e}[v]\vert _{x_e}\vert \leqslant \sigma (k+1)h^{-3/2} |[v]_{x_e}| \, \left( \Vert u \Vert _{L^2(I_e)} + \Vert u \Vert _{L^2(I_{e-1})}\right) . \end{aligned}$$

For the boundary terms, similar arguments result in the following bounds:

$$\begin{aligned} |\{a\, \partial _x u \}\vert _{x_0}[v]\vert _{x_0}|&\leqslant 2 a_1 M_k^{1/2} k h^{-3/2} \Vert u\Vert _{L^2(I_0)} \, |[v]\vert _{x_0}|, \\ |\epsilon \{ a\,\partial _x v \}\vert _{x_0} [ u]\vert _{x_0}|&\leqslant |\epsilon | \frac{a_1}{\sqrt{a_0}} k(k+1) h^{-1} \Vert a^{1/2} \partial _x v\Vert _{L^2(I_0)} \, \Vert u \Vert _{L^2(I_0)}, \\ |\frac{\sigma }{h} [u]\vert _{x_0}[v]\vert _{x_0}|&\leqslant \sigma (k+1) h^{-3/2} |[v]\vert _{x_0}|\, \Vert u \Vert _{L^2(I_0)}. \end{aligned}$$

Similar bounds hold for \(e=N+1\). Using the Cauchy-Schwarz’s inequality, we obtain

$$\begin{aligned} |{\mathcal {B}}(u,v)| \leqslant \gamma _k h^{-1} \Vert u \Vert \Vert v \Vert _{\mathrm{DG}} \end{aligned}$$

with

$$\begin{aligned} \gamma _k = 2\left( 4 \frac{a_1^2}{\sigma } M_k k^2 + \epsilon ^2 \frac{a_1^2}{a_0} k^2 (k+1)^2 + \sigma (k+1)^2 \right) ^{1/2}. \end{aligned}$$

1.3 A.3 Proof of Bound (94)

To bound the last term, we use the following trace inequality for functions in \(H^1(I_e)\) [22]:

$$\begin{aligned} |u(x)| \leqslant Kh^{-1/2} \left( \Vert u \Vert _{L^2(I_e)} + h \Vert \partial _x u \Vert _{L^2(I_e)}\right) , \quad \forall u \in H^1(I_e), \,\, x = x_e, x_{e+1}. \end{aligned}$$
(A 5)

The last term appearing in the convergence proof is

$$\begin{aligned} \left| \sum _{e=0}^N {\mathcal {J}}_e(C_h^n, \chi ^{n+1}) - {\mathcal {J}}_e(C^n, \chi ^{n+1})\right|&\leqslant \left| \sum _{e=0}^N \int _{x_e}^{x_{e+1}} (f(C^n_h)- f(C^n)) \partial _x \chi ^{n+1} \right| \\&\quad + \left| \sum _{e=0}^{N+1} (f^{nf}(C_h^n)\vert _{x_e} - f^{nf}(C^n)\vert _{x_e})[\chi ^{n+1}] \right| . \end{aligned}$$

The first term is bounded by (A 2) and the triangle inequality:

$$\begin{aligned} \left| \sum _{e=0}^N \int _{x_e}^{x_{e+1}} (f(C^n_h)- f(C^n)) \partial _x \chi ^{n+1} \right| \leqslant L_1 a_0^{-1/2} (\Vert \chi ^n \Vert + \Vert \rho ^n \Vert ) \Vert \chi ^{n+1}\Vert _{\mathrm{DG}}. \end{aligned}$$
(A 6)

We bound the second term using the Lipschitz continuity assumption on \(f^{nf}\) (62) and the triangle inequality:

$$\begin{aligned} \left| \sum _{e=0}^{N+1} (f^{nf}(C_h^n)\vert _{x_e} - f^{nf}(C^n)\vert _{x_e})[\chi ^{n+1}]\vert _{x_e} \right|&\leqslant \sum _{e=0}^N L_2(|\chi ^n(x_e^+)|+|\rho ^n(x_e^+)|) [\chi ^{n+1}]\vert _{x_e} \\&\quad +\sum _{e=1}^{N+1} L_2(|\chi ^n(x_e^-)| + |\rho ^n(x_e^-)|)| [\chi ^{n+1}]\vert _{x_e}. \end{aligned}$$

Using the trace inequalities (65) and (A 5), we obtain

$$\begin{aligned} \left| \sum _{e=0}^{N+1} (f^{nf}(C_h^n)\vert _{x_e} - f^{nf}(C)\vert _{x_e})[\chi ^{n+1}] \right|&\leqslant 2L_2\sigma ^{-1/2}(k+1) \Vert \chi ^n \Vert \Vert \chi ^{n+1} \Vert _{\mathrm{DG}}\nonumber \\&\!\!\!\!\!\!\!+ K \left( \Vert \rho ^n \Vert ^2 + h^2 \sum _{e=0}^{N} \Vert \partial _x \rho ^n \Vert _{L^2(I_e)}^2 \right) ^{1/2}\nonumber \\&\!\!\!\!\!\!\!\times \Vert \chi ^{n+1} \Vert _{\mathrm{DG}}. \end{aligned}$$
(A 7)

Using the approximation results of the elliptic projection (82) and (83), we obtain

(A 8)

The final bound, (94), is attained by an application of Young’s inequality.

1.4 A.4 Parameters for Fifty-Five Vessel Network

 

Vessel name

L, cm

\(A_0, \text {cm}^2\)

\(\beta \), \( \text {dyn}/\text {cm}^3\)

\(R_2\), \(\text {dyn.s}/\text {cm}^5\)

\(C_{\mathrm{cap}}\), \(\text {cm}^{5}/\text {dyn}\)

1

Ascending Aorta

4.0

5.983

97 000

2

Aortic Arch I

2.0

5.147

87 000

3

Brachiocephalic

3.4

1.219

233 000

4

R. Subclavian I

3.4

0.562

423 000

5

R. Carotid

17.7

0.432

516 000

6

R. Vertebral

14.8

0.123

2 590 000

72 417

\(3.129 \times 10^{-6}\)

7

R. Subclavian II

42.2

0.510

466 000

8

R. Radial

23.5

0.106

2 866 000

46 155

\(4.909 \times 10^{-6}\)

9

R. Ulnar I

6.7

0.145

2 246 000

10

R. Interosseous

7.9

0.031

12 894 000

191 252

\(1.185 \times 10^{-6}\)

11

R. Ulnar II

17.1

0.133

2 446 000

46 995

\(4.821 \times 10^{-6}\)

12

R. Internal Carotid

17.6

0.121

2 644 000

23 041

\(9.833 \times 10^{-6}\)

13

R. External Carotid

17.7

0.121

2 467 000

37 563

\(6.032 \times 10^{-6}\)

14

Aortic Arch II

3.9

3.142

130 000

15

L. Carotid

20.8

0.430

519 000

16

L. Internal Carotid

17.6

0.121

2 644 000

23 118

\(9.801 \times 10^{-6}\)

17

L. External Carotid

17.7

0.121

2 467 000

37 696

\(6.011 \times 10^{-6}\)

18

Thoracic Aorta I

5.2

3.142

124 000

19

L. Subclavian I

3.4

0.562

416 000

20

Vertebral

14.8

0.123

2 590 000

76 972

\(2.944 \times 10^{-6}\)

21

L. Subclavian II

42.2

0.510

466 000

22

L. Radial

23.5

0.106

2 866 000

45 329

\(4.998 \times 10^{-6}\)

23

L. Ulnar I

6.7

0.145

2 246 000

24

L. Interosseous

7.9

0.031

12 894 000

191 945

\(1.180 \times 10^{-6}\)

25

L. Ulnar II

17.1

0.133

2 246 000

47 905

\(4.730 \times 10^{-6}\)

26

Intercostals

8.0

0.196

885 000

996 508

\(2.274 \times 10^{-6}\)

27

Thoracic Aorta II

10.4

3.017

117 000

28

Abdominal I

5.3

1.911

167 000

29

Celiac I

2.0

0.478

475 000

30

Celiac II

1.0

0.126

1 805 000

31

Hepatic

6.6

0.152

1 142 000

13 394

\(1.692\times 10^{-5}\)

32

Gastric

7.1

0.102

1 567 000

1 373 574

\(1.650\times 10^{-7}\)

33

Splenic

6.3

0.238

806 000

18 933

\(1.197 \times 10^{-5}\)

34

Superior Mesenteric

5.9

0.430

569 000

8 728

\(2.596 \times 10^{-5}\)

35

Abdominal II

1.0

1.247

227 000

36

L. Renal

3.2

0.332

566 000

9 051

\(2.503 \times 10^{-5}\)

37

Abdominal III

1.0

1.021

278 000

38

R. Renal

3.2

0.159

1 181 000

9 082

\(2.495 \times 10^{-5}\)

39

Abdominal IV

10.6

0.697

381 000

40

Inferior Mesenteric

5.0

0.08

1 895 000

95 652

\(2.369\times 10^{-6}\)

41

Abdominal V

1.0

0.578

399 000

42

R. Common Iliac

5.9

0.328

649 000

43

L. Common Iliac

5.8

0.328

649 000

44

L. External Iliac

14.4

0.252

1 493 000

45

L. Internal Iliac

5.0

0.181

3 134 000

16 632

\(1.362 \times 10^{-5}\)

46

L. Femoral

44.3

0.139

2 559 000

47

L. Deep Femoral

12.6

0.126

2 652 000

13 715

\(1.652 \times 10^{-5}\)

48

L. Posterior Tibial

32.1

0.110

5 808 000

84 662

\(2.676 \times 10^{-6}\)

49

L. Anterior Tibial

34.3

0.060

9 243 000

98 131

\(2.309 \times 10^{-6}\)

50

R. External Iliac

14.5

0.252

1 493 000

51

R. Internal Iliac

5.1

0.181

3 134 000

16 582

\(1.366 \times 10^{-5}\)

52

R. Femoral

44.4

0.139

2 559 000

53

R. Deep Femoral

12.7

0.126

2 652 000

13 707

\(1.653 \times 10^{-5} \)

54

R. Posterior Tibial

32.2

0.110

5 808 000

84 625

\(2.677 \times 10^{-6}\)

55

R. Anterior Tibial

34.4

0.060

9 243 000

98 100

\(2.310 \times 10^{-6}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masri, R., Puelz, C. & Riviere, B. A Discontinuous Galerkin Method for Blood Flow and Solute Transport in One-Dimensional Vessel Networks. Commun. Appl. Math. Comput. 4, 500–529 (2022). https://doi.org/10.1007/s42967-021-00126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00126-5

Keywords

Mathematics Subject Classification

Navigation