Skip to main content

Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations

Abstract

In this paper, we study the classical Allen-Cahn equations and investigate the maximum-principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen-Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to demonstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use relatively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  MATH  Google Scholar 

  4. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Article  Google Scholar 

  5. Chen, Z., Huang, H., Yan, J.: Third order maximum-principle-satisfying direct discontinuous Galerkin method for time dependent convection diffusion equations on unstructured triangular meshes. J. Comput. Phys. 308, 198–217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chuenjarern, N., Xu, Z., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes. J. Comput. Phys. 378, 110–128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, E., Lee, C.S.: A staggered discontinuous Galerkin method for convection-diffusion equations. J. Numer. Math. 20, 1–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Du, J., Chung, E.: An adaptive staggered discontinuous Galerkin method for the steady state convection-diffusion equation. J. Sci. Comput. 77, 1490–1518 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, J., Wang, C., Qian, C., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonation. SIAM J. Sci. Comput. 41, B250–B273 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, J., Yang, Y.: Maximum-principle-preserving third-order local discontinuous Galerkin methods on overlapping meshes. J. Comput. Phys. 377, 117–141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, J., Yang, Y.: Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations. J. Comput. Phys. 395, 489–510 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, J., Yang, Y., Chung, E.: Stability analysis and error estimates of local discontinuous Galerkin method for convection-diffusion equations on overlapping meshes. BIT Numer. Math. 59, 853–876 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization method. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, L., Yang, Y.: Positivity-preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions. J. Comput. Phys. 289, 181–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, H., Yang, Y.: Bound-preserving discontinuous Galerkin method for compressible miscible displacement problem in porous media. SIAM J. Sci. Comput. 39, A1969–A1990 (2017)

    Article  MATH  Google Scholar 

  23. Hou, T.L., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X., Shu, C.-W., Yang, Y.: Local discontinuous Galerkin method for the Keller-Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, H., Yan, J.: The direct discontinuous Galerkin methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central local discontinuous Galerkin method on overlapping cells for diffusion equations. ESAIM Math. Model. Numer. Anal. 45, 1009–1032 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reed, W.H., Hill, T.R.: Triangular mesh method for the neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos (1973)

  29. Riviere, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 8, 337–360 (1999)

    Article  MATH  Google Scholar 

  30. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Srinivasan, S., Poggie, J., Zhang, X.: A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations. J. Comput. Phys. 366, 120–143 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34, 471–481 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Wang, C., Wise, S., Lowengrub, J.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wheeler, M.: An elliptic collocation finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xiong, T., Qiu, J.-M., Xu, Z.: High order maximum-principle-preserving discontinuous Galerkin method for convection-diffusion equations. SIAM J. Sci. Comput. 37, A583–A608 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, Z., Yang, Y., Guo, H.: High-order bound-preserving discontinuous Galerkin methods for wormhole propagation on triangular meshes. J. Comput. Phys. 390, 323–341 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, X., Han, D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Jie Du is supported by the National Natural Science Foundation of China under Grant Number NSFC 11801302 and Tsinghua University Initiative Scientific Research Program. Eric Chung is supported by Hong Kong RGC General Research Fund (Projects 14304217 and 14302018). The third author is supported by the NSF grant DMS-1818467.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Chung, E. & Yang, Y. Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations. Commun. Appl. Math. Comput. 4, 353–379 (2022). https://doi.org/10.1007/s42967-020-00118-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00118-x

Keywords

  • Maximum-principle-preserving
  • Local discontinuous Galerkin methods
  • Allen-Cahn equation
  • Conservative exponential integrations

Mathematics Subject Classification

  • 65M12
  • 65M60