Skip to main content
Log in

Arc Length-Based WENO Scheme for Hamilton–Jacobi Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this article, novel smoothness indicators are presented for calculating the nonlinear weights of the weighted essentially non-oscillatory scheme to approximate the viscosity numerical solutions of Hamilton–Jacobi equations. These novel smoothness indicators are constructed from the derivatives of reconstructed polynomials over each sub-stencil. The constructed smoothness indicators measure the arc-length of the reconstructed polynomials so that the new nonlinear weights could get less absolute truncation error and give a high-resolution numerical solution. Extensive numerical tests are conducted and presented to show the performance capability and the numerical accuracy of the proposed scheme with the comparison to the classical WENO scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abedian, R., Adibi, H., Dehghan, M.: Symmetrical weighted essentially non-oscillatory flux limiter schemes for Hamilton–Jacobi equations. Math. Methods Appl. Sci. 38, 4710–4728 (2015)

    Article  MathSciNet  Google Scholar 

  2. Abgrall, R.: Numerical discretization of the first-order Hamilton–Jacobi equation on triangular meshes. Commun. Pure Appl. Math. 49, 1339–1373 (1996)

    Article  MathSciNet  Google Scholar 

  3. Augoula, S., Abgrall, R.: High order numerical discretization for Hamilton–Jacobi equations on triangular meshes. J. Sci. Comput. 15, 197–229 (2000)

    Article  MathSciNet  Google Scholar 

  4. Biswas, B., Dubey, R.K.: Accuracy preserving ENO and WENO schemes using novel smoothness measurement. arxiv:1809.07956v1 (2018)

  5. Bryson, S., Levy, D.: High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton–Jacobi equations. J. Comput. Phys. 189, 63–87 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bryson, S., Levy, D.: High-order central WENO schemes for multidimensional Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41, 1339–1369 (2003)

    Article  MathSciNet  Google Scholar 

  7. Bryson, S., Levy, D.: Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton–Jacobi equations. App. Numer. Math. 56, 1211–1224 (2006)

    Article  MathSciNet  Google Scholar 

  8. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. J. Comput. Phys. 223, 398–415 (2007)

    Article  MathSciNet  Google Scholar 

  9. Cheng, Y., Wang, Z.: A new discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. J. Comput. Phys. 268, 134–153 (2014)

    Article  MathSciNet  Google Scholar 

  10. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  Google Scholar 

  11. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43, 1–19 (1984)

    Article  MathSciNet  Google Scholar 

  12. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282, 487–502 (1984)

    Article  MathSciNet  Google Scholar 

  13. Crandall, M.G., Ishii, H., Lions, P.L.: Users guide to viscosity solutions of second order partial equations. Bull. Am. Math. Soc. (NS) 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  14. Guo, W., Li, F., Qiu, J.: Local-structure-preserving discontinuous Galerkin methods with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Sci. Comput. 47(2), 239–257 (2011)

    Article  MathSciNet  Google Scholar 

  15. Ha, Y., Kim, C., Lee, Y.J., Yoon, J.: Mapped WENO schemes based on a new smoothness indicator for Hamilton–Jacobi equations. J. Math. Anal. Appl. 394, 670–682 (2012)

    Article  MathSciNet  Google Scholar 

  16. Hu, C., Shu, C.-W.: A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 666–690 (1999)

    Article  MathSciNet  Google Scholar 

  17. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  Google Scholar 

  18. Kurganov, A., Tadmor, E.: New high-resolution semi-discrete central schemes for Hamilton–Jacobi equations. J. Comput. Phys. 160, 720–742 (2000)

    Article  MathSciNet  Google Scholar 

  19. Lafon, F., Osher, S.: High order two dimensional nonoscillatory methods for solving Hamilton–Jacobi scalar equations. J. Comput. Phys. 123, 235–253 (1996)

    Article  MathSciNet  Google Scholar 

  20. Li, X.G., Chan, C.K.: High-order schemes for Hamilton–Jacobi equations on triangular meshes. J. Comput. Appl. Math. 167, 227–241 (2004)

    Article  MathSciNet  Google Scholar 

  21. Lin, C.T., Tadmor, E.: High-resolution non-oscillatory central schemes for approximate Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2163–2186 (2000)

    Article  MathSciNet  Google Scholar 

  22. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  23. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MathSciNet  Google Scholar 

  24. Qiu, J.: Hermite WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Comput. Math. 25, 131–144 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Qiu, J.: WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Comput. Appl. Math. 200, 591–605 (2007)

    Article  MathSciNet  Google Scholar 

  26. Qiu, J., Shu, C.-W.: Hermite WENO schemes for Hamilton–Jacobi equations. J. Comput. Phys. 204, 82–99 (2005)

    Article  MathSciNet  Google Scholar 

  27. Rathan, S.: L1-type smoothness indicators based weighted essentially nonoscillatory scheme for Hamilton–Jacobi equations. Int. J. Numer. Meth. Fluid. (2020). https://doi.org/10.1002/fld.4855

    Article  MathSciNet  Google Scholar 

  28. Serna, S., Qian, J.: Fifth order weighted power-ENO methods for Hamilton–Jacobi equations. J. Sci. Comput. 29, 57–81 (2006)

    Article  MathSciNet  Google Scholar 

  29. Souganidis, P.E.: Approximation schemes for viscosity solutions of Hamilton–Jacobi equations. J. Differ. Equ. 59, 1–43 (1985)

    Article  MathSciNet  Google Scholar 

  30. Yan, J., Osher, S.: A local discontinuous Galerkin method for directly solving Hamilton–Jacobi equations. J. Comput. Phys. 230, 232–244 (2011)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Y.T., Shu, C.-W.: High-order WENO schemes for Hamilton–Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    Article  MathSciNet  Google Scholar 

  32. Zheng, F., Qiu, J.: Directly solving the Hamilton–Jacobi equations by Hermite WENO schemes. J. Comput. Phys. 307, 423–445 (2016)

    Article  MathSciNet  Google Scholar 

  33. Zheng, F., Shu, C.-W., Qiu, J.: Finite difference Hermite WENO schemes for the Hamilton–Jacobi equations. J. Comput. Phys. 337, 27–41 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton–Jacobi equations. Numer. Methods Partial Differ. Equ. 33, 1095–1113 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathan Samala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samala, R., Biswas, B. Arc Length-Based WENO Scheme for Hamilton–Jacobi Equations. Commun. Appl. Math. Comput. 3, 481–496 (2021). https://doi.org/10.1007/s42967-020-00091-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00091-5

Keywords

Mathematics Subject Classification

Navigation