Skip to main content

Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability


In the hyperbolic research community, there exists the strong belief that a continuous Galerkin scheme is notoriously unstable and additional stabilization terms have to be added to guarantee stability. In the first part of the series [6], the application of simultaneous approximation terms for linear problems is investigated where the boundary conditions are imposed weakly. By applying this technique, the authors demonstrate that a pure continuous Galerkin scheme is indeed linearly stable if the boundary conditions are imposed in the correct way. In this work, we extend this investigation to the nonlinear case and focus on entropy conservation. By switching to entropy variables, we provide an estimation of the boundary operators also for nonlinear problems, that guarantee conservation. In numerical simulations, we verify our theoretical analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    This term is also referred to as a fluctuation term in literature [8].

  2. 2.

    In the finite difference community \({\underline{\underline{M}}}\) is called norm matrix and is classically abbreviated with P, c.f., [28, 38].

  3. 3.

    In abuse of notation we use \(\mathbf {g}'\) for the derivative of \(\mathbf {g}{\mathbf {n}}\) and do not apply everywhere the normal vector \({\mathbf {n}}\). Similar also for the relation (10).


  1. 1.

    Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7), 641–669 (2006)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Abgrall, R.: High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput. 73(2/3), 461–494 (2017)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Abgrall, R., Bacigaluppi, P., Tokareva, S.: A high-order nonconservative approach for hyperbolic equations in fluid dynamics. Comput. Fluids 169, 10–22 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Abgrall, R., Meledo, E.l., Oeffner, P.: On the connection between residual distribution schemes and flux reconstruction. arXiv:1807.01261 (2018)

  6. 6.

    Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods part I: linear problems. arXiv:1912.08108 (2019)

  7. 7.

    Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes. arXiv:1908.04556 (2019)

  8. 8.

    Abgrall, R., Roe, P.L.: High order fluctuation schemes on triangular meshes. J. Sci. Comput. 19(1/2/3), 3–36 (2003)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 193(15/16), 1437–1453 (2004)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Chen, T., Shu, C.-W.: Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes. CSIAM Trans. Appl. Math. 1, 1–52 (2020)

    Google Scholar 

  12. 12.

    Deconinck, H., Sermeus, K., Abgrall, R.: Status of multidimensional upwind distribution schemes and applications in aeronautics. AIAA Pap. 4079, 2007 (2000)

    Google Scholar 

  13. 13.

    Ern, A., Guermond, J.-L.: Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44(2), 753–778 (2006)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. Technical Report NASA/TM-2013-217971, NASA, NASA Langley Research Center, Hampton, VA 23681-2199, United States (2013)

  16. 16.

    Friedrich, L., Schnücke, G., Winters, A.R., Fernández, D.C.D.R., Gassner, G.J., Carpenter, M.H.: Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws. J. Sci. Comput. 80(1), 175–222 (2019)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11(3), 333–418 (1958)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Glaubitz, J., Öffner, P., Ranocha, H., Sonar, T.: Artificial viscosity for correction procedure via reconstruction using summation-by-parts operators. In: XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, pp 363–375. Springer, New York (2016)

  21. 21.

    Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservation Laws. Ellipses, Oxford (1991)

    MATH  Google Scholar 

  22. 22.

    Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)

    Book  Google Scholar 

  23. 23.

    Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151–164 (1983)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285–312 (1984)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Ketcheson, D.I.: Relaxation Runge-Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850–2870 (2019)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Lax, P.D.: Shock waves and entropy. In: Zarantonello, E.H. (ed) Contributions to Nonlinear Functional Analysis, pp. 603–634. Mathematics Research Center, University of Madison, Academic Press, Cambridge (1971)

  27. 27.

    Mock, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37(1), 70–88 (1980)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Nordström, J.: A roadmap to well posed and stable problems in computational physics. J. Sci. Comput. 71(1), 365–385 (2017)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Nordström, J., La Cognata, C.: Energy stable boundary conditions for the nonlinear incompressible Navier–Stokes equations. Math. Comput. 88(316), 665–690 (2019)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Nordström, J., Lundquist, T.: Summation-by-parts in time. J. Comput. Phys. 251, 487–499 (2013)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Öffner, P.: Error boundedness of correction procedure via reconstruction/flux reconstruction. arXiv:1806.01575 (2019)

  33. 33.

    Öffner, P., Glaubitz, J., Ranocha, H.: Analysis of artificial dissipation of explicit and implicit time-integration methods. Int. J. Numer Anal. Model. 17(3), 332–349 (2020)

    MathSciNet  Google Scholar 

  34. 34.

    Öffner, P., Glaubitz, J., Ranocha, H.: Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers’ equation using a polynomial chaos approach. ESAIM Math. Model. Numer. Anal. 52(6), 2215–2245 (2018)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Öffner, P., Hendrik, R.: Error boundedness of discontinuous Galerkin methods with variable coefficients. J. Sci. Comput. 79, 1572–1607 (2019)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Ricchiuto, M., Abgrall, R.: Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)

    MathSciNet  Article  Google Scholar 

Download references


P.Öffner has been funded by the SNF Grant (Number 200021_175784) and by the UZH Postdoc grant. This research was initiated by a first visit of JN at UZH, and really started during ST postdoc at UZH. This postdoc was funded by an SNF Grant 200021_153604. The Los Alamos unlimited release number is LA-UR-19-32411.

Author information



Corresponding author

Correspondence to P. Öffner.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abgrall, R., Nordström, J., Öffner, P. et al. Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability. Commun. Appl. Math. Comput. (2021).

Download citation


  • Continuous Galerkin
  • Entropy stability
  • Simultaneous approximation terms
  • Initial-boundary value problem
  • Hyperbolic conservation laws

Mathematics Subject Classification

  • 65M12
  • 65M60
  • 65M70
  • 65M06