Skip to main content
Log in

Parallel Implicit-Explicit General Linear Methods

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

High-order discretizations of partial differential equations (PDEs) necessitate high-order time integration schemes capable of handling both stiff and nonstiff operators in an efficient manner. Implicit-explicit (IMEX) integration based on general linear methods (GLMs) offers an attractive solution due to their high stage and method order, as well as excellent stability properties. The IMEX characteristic allows stiff terms to be treated implicitly and nonstiff terms to be efficiently integrated explicitly. This work develops two systematic approaches for the development of IMEX GLMs of arbitrary order with stages that can be solved in parallel. The first approach is based on diagonally implicit multi-stage integration methods (DIMSIMs) of types 3 and 4. The second is a parallel generalization of IMEX Euler and has the interesting feature that the linear stability is independent of the order of accuracy. Numerical experiments confirm the theoretical rates of convergence and reveal that the new schemes are more efficient than serial IMEX GLMs and IMEX Runge–Kutta methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015). https://doi.org/10.11588/ans.2015.100.20553

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2/3), 151–167 (1997)

    Article  MathSciNet  Google Scholar 

  3. Ascher, U.M., Ruuth, S.J., Wetton, B.T.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  Google Scholar 

  4. Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926–1945 (2009)

    Article  MathSciNet  Google Scholar 

  5. Braś, M., Cardone, A., Jackiewicz, Z., Pierzchała, P.: Error propagation for implicit-explicit general linear methods. Appl. Numer. Math. 131, 207–231 (2018). https://doi.org/10.1016/j.apnum.2018.05.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Braś, M., Izzo, G., Jackiewicz, Z.: Accurate implicit-explicit general linear methods with inherent Runge–Kutta stability. J. Sci. Comput. 70(3), 1105–1143 (2017)

    Article  MathSciNet  Google Scholar 

  7. Butcher, J.C.: Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11(5), 347–363 (1993)

    Article  MathSciNet  Google Scholar 

  8. Butcher, J.C.: General linear methods for the parallel solution of ordinary differential equations. In: Contributions in Numerical Mathematics, pp. 99–111. World Scientific, Singapore (1993)

  9. Butcher, J.C.: Order and stability of parallel methods for stiff problems. Adv. Computat. Math. 7(1/2), 79–96 (1997)

    Article  MathSciNet  Google Scholar 

  10. Butcher, J.C., Chartier, P.: Parallel general linear methods for stiff ordinary differential and differential algebraic equations. Appl. Numer. Math. 17(3), 213–222 (1995). https://doi.org/10.1016/0168-9274(95)00029-T

    Article  MathSciNet  MATH  Google Scholar 

  11. Califano, G., Izzo, G., Jackiewicz, Z.: Starting procedures for general linear methods. Appl. Numer. Math. 120, 165–175 (2017). https://doi.org/10.1016/J.APNUM.2017.05.009

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolated IMEX Runge–Kutta methods. Math. Model. Anal. 19(2), 18–43 (2014). https://doi.org/10.3846/13926292.2014.892903

    Article  MathSciNet  MATH  Google Scholar 

  13. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit-explicit general linear methods. Numer. Algorithms 65(3), 377–399 (2014). https://doi.org/10.1007/s11075-013-9759-y

    Article  MathSciNet  MATH  Google Scholar 

  14. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Construction of highly stable implicit-explicit general linear methods. In: AIMS proceedings, vol. 2015. Dynamical Systems, Differential Equations, and Applications, pp. 185–194. Madrid, Spain (2015). https://doi.org/10.3934/proc.2015.0185

  15. Computational Science Laboratory: ODE test problems (2020). https://github.com/ComputationalScienceLaboratory/ODE-Test-Problems

  16. Connors, J.M., Miloua, A.: Partitioned time discretization for parallel solution of coupled ODE systems. BIT Numer. Math. 51(2), 253–273 (2011). https://doi.org/10.1007/s10543-010-0295-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Constantinescu, E., Sandu, A.: Extrapolated implicit-explicit time stepping. SIAM J. Sci. Comput. 31(6), 4452–4477 (2010). https://doi.org/10.1137/080732833

    Article  MathSciNet  MATH  Google Scholar 

  18. Ditkowski, A., Gottlieb, S., Grant, Z.J.: IMEX error inhibiting schemes with post-processing. arXiv:1912.10027 (2019)

  19. Frank, J., Hundsdorfer, W., Verwer, J.: On the stability of implicit-explicit linear multistep methods. Appl. Numer. Math. 25(2/3), 193–205 (1997)

    Article  MathSciNet  Google Scholar 

  20. Hairer, E., Wanner, G.: Solving ordinary differential equations II: stiff and differential-algebraic problems, 2 edn. No. 14. In: Springer Series in Computational Mathematics. Springer, Berlin (1996)

  21. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)

    Article  MathSciNet  Google Scholar 

  22. Izzo, G., Jackiewicz, Z.: Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part. Numer. Algorithms 81(4), 1343–1359 (2019)

    Article  MathSciNet  Google Scholar 

  23. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Amsterdam (2009)

    Book  Google Scholar 

  24. Jackiewicz, Z., Mittelmann, H.: Construction of IMEX DIMSIMs of high order and stage order. Appl. Numer. Math. 121, 234–248 (2017). https://doi.org/10.1016/j.apnum.2017.07.004

    Article  MathSciNet  MATH  Google Scholar 

  25. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1/2), 139–181 (2003). https://doi.org/10.1016/S0168-9274(02)00138-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Kennedy, C.A., Carpenter, M.H.: Higher-order additive Runge–Kutta schemes for ordinary differential equations. Appl. Numer. Math. 136, 183–205 (2019). https://doi.org/10.1016/j.apnum.2018.10.007

    Article  MathSciNet  MATH  Google Scholar 

  27. Lang, J., Hundsdorfer, W.: Extrapolation-based implicit-explicit peer methods with optimised stability regions. J. Comput. Phys. 337, 203–215 (2017)

    Article  MathSciNet  Google Scholar 

  28. Pareschi, L., Russo, G.: Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1), 129–155 (2005)

    Article  MathSciNet  Google Scholar 

  29. Roberts, S., Popov, A.A., Sandu, A.: ODE test problems: a MATLAB suite of initial value problems (2019). arXiv:1901.04098

  30. Sarshar, A., Roberts, S., Sandu, A.: Alternating directions implicit integration in a general linear method framework. J. Comput. Appl. Math., 112619 (2019). https://doi.org/10.1016/j.cam.2019.112619

  31. Schneider, M., Lang, J., Hundsdorfer, W.: Extrapolation-based super-convergent implicit-explicit peer methods with A-stable implicit part. J. Comput. Phys. 367, 121–133 (2018)

    Article  MathSciNet  Google Scholar 

  32. Soleimani, B., Weiner, R.: Superconvergent IMEX peer methods. Appl. Numer. Math. 130, 70–85 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhang, H., Sandu, A.: A second-order diagonally-implicit-explicit multi-stage integration method. In: Proceedings of the International Conference on Computational Science, ICCS 2012, vol. 9, pp. 1039–1046 (2012). https://doi.org/10.1016/j.procs.2012.04.112

  34. Zhang, H., Sandu, A., Blaise, S.: Partitioned and implicit-explicit general linear methods for ordinary differential equations. J. Sci. Comput. 61(1), 119–144 (2014). https://doi.org/10.1007/s10915-014-9819-z

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, H., Sandu, A., Blaise, S.: High order implicit-explicit general linear methods with optimized stability regions. SIAM J. Sci. Comput. 38(3), A1430–A1453 (2016). https://doi.org/10.1137/15M1018897

    Article  MathSciNet  MATH  Google Scholar 

  36. Zharovsky, E., Sandu, A., Zhang, H.: A class of IMEX two-step Runge–Kutta methods. SIAM J. Numer. Anal. 53(1), 321–341 (2015). https://doi.org/10.1137/130937883

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper. URL: http://www.arc.vt.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Roberts.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This work was funded by awards NSF CCF1613905, NSF ACI1709727, AFOSR DDDAS FA9550-17-1-0015, and by the Computational Science Laboratory at Virginia Tech.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, S., Sarshar, A. & Sandu, A. Parallel Implicit-Explicit General Linear Methods. Commun. Appl. Math. Comput. 3, 649–669 (2021). https://doi.org/10.1007/s42967-020-00083-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00083-5

Keywords

Mathematics Subject Classification

Navigation