Skip to main content
Log in

A Finite Difference Method for Space Fractional Differential Equations with Variable Diffusivity Coefficient

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving variable-coefficient one-dimensional (steady state) fractional differential equations (DEs) with two-sided fractional derivatives (FDs). The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided FD when the right-sided FD is approximated by two consecutive applications of the first-order backward Euler method. Our scheme reduces to the standard second-order central difference in the absence of FDs. The existence and uniqueness of the numerical solution are proved, and truncation errors of order h are demonstrated (h denotes the maximum space step size). The numerical tests illustrate the global O(h) accuracy, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Almoaeet, M.K., Shamsi, M., Khosravian-Arab, H., Torres, D.F.M.: A collocation method of lines for two-sided space-fractional advection-diffusion equations with variable coefficients. Math. Methods Appl. Sci. 42, 3465–3480 (2019)

    Article  MathSciNet  Google Scholar 

  2. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  3. Celik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chaves, A.: Fractional diffusion equation to describe Lévy fights. Phys. Lett. A 239, 12–16 (1998)

    Article  Google Scholar 

  5. Chechkin, A.V., Klafter, J., Sokolov, I.M.: Fractional Fokker–Planck equation for ultraslow kinetics. Europhys. Lett. 63, 326–332 (2003)

    Article  Google Scholar 

  6. Del-Castillo-Negrete, D.: Chaotic transport in zonal flows in analogous geophysical and plasma systems. Phys. Plasmas 7, 1702–1711 (2000)

    Article  MathSciNet  Google Scholar 

  7. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    Article  MathSciNet  Google Scholar 

  8. Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl., 5(suppl. 3S): Paper no. 22, 1–45, (2014)

  9. Ding, H., Li, C., Chen, Y.: High-order algorithms for Riesz derivative and their applications I. Abstr. Appl. Anal. 2014, 1–17 (2014). https://doi.org/10.1155/2014/653797

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part. Differ. Equ. 22, 559–576 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comp. 87, 2273–2294 (2018)

    Article  MathSciNet  Google Scholar 

  12. Feng, L., Zhuang, P., Liu, F., Turner, I., Anh, V., Li, J.: A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients. Comput. Math. Appl. 73, 1155–1171 (2017)

    Article  MathSciNet  Google Scholar 

  13. Feng, L., Zhuang, P., Liu, F., Turner, I., Yang, Q.: Second-order approximation for the space fractional diffusion equation with variable coefficient. Prog. Frac. Diff. Appl. 1, 23–35 (2017)

    Google Scholar 

  14. Ford, N.J., Savostyanov, D.V., Zamarashkin, N.L.: on the decay of the elements of inverse triangular Toeplitz matrices. SIAM J. Matrix Anal. Appl. 35, 1288–1302 (2014)

    Article  MathSciNet  Google Scholar 

  15. Guo, X., Li, Y., Wang, H.: A fourth-order scheme for space fractional diffusion equations. J. Comput. Phy. 373, 410–424 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hao, Z., Park, M., Lin, G., Cai, Z.: Finite element method for two-sided fractional differential equations with variable coefficients: Galerkin approach. J. Sci. Comput. 79, 700–717 (2019)

    Article  MathSciNet  Google Scholar 

  17. Hardy, G.H.: Divergent Series. Clarendon Press, Oxford (1949)

    MATH  Google Scholar 

  18. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  19. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)

    Article  MathSciNet  Google Scholar 

  20. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comp. 84, 2665–2700 (2015)

    Article  MathSciNet  Google Scholar 

  21. Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal. 54, 1763–1784 (2016)

    Article  MathSciNet  Google Scholar 

  22. Kharazmi, E., Zayernouri, M., Karniadakis, G.Em: A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512–536 (2017)

    Article  MathSciNet  Google Scholar 

  23. Li, X., Xu, C.: The existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)

    Article  MathSciNet  Google Scholar 

  24. Lin, X-l, Ng, M.K., Sun, H.-W.: Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equations with variable diffusion coefficients. J. Sci. Comput. 75, 1102–1127 (2018)

    Article  MathSciNet  Google Scholar 

  25. Liu, Y., Yan, Y., Khan, M.: Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations. Appl. Numer. Math. 115, 200–213 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lucchesi, M., Allouch, S., Le Maître, O.P., Mustapha, K.A., Knio, O.M.: Particle simulation of space-fractional diffusion equations. Comp. Part. Mech. (2019). https://doi.org/10.1007/s40571-019-00275-8

    Article  Google Scholar 

  27. Lynch, V., Carreras, B., del Castillo-Negrete, D., Ferreira-Mejias, K., Hicks, H.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)

    Article  MathSciNet  Google Scholar 

  28. Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44, 745–771 (2018)

    Article  MathSciNet  Google Scholar 

  30. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  Google Scholar 

  31. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  32. Mustapha, K.: An implicit finite difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31, 719–739 (2011)

    Article  MathSciNet  Google Scholar 

  33. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. (2006). https://doi.org/10.1155/ijmms/2006/48391

    Article  MathSciNet  MATH  Google Scholar 

  34. Solomon, T.H., Weeks, E.R., Swinney, H.L.: Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3978 (1993)

    Article  Google Scholar 

  35. Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009)

    Article  MathSciNet  Google Scholar 

  36. Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35, 698–721 (2015)

    Article  MathSciNet  Google Scholar 

  37. Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  Google Scholar 

  38. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  39. Vong, S., Lyu, P.: On a second order scheme for space fractional diffusion equations with variable coefficients. Appl. Numer. Math. 137, 34–48 (2019)

    Article  MathSciNet  Google Scholar 

  40. Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)

    Article  MathSciNet  Google Scholar 

  41. Wang, H., Yang, D., Zhu, S.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 52, 1292–1310 (2014)

    Article  MathSciNet  Google Scholar 

  42. Wang, H., Yang, D., Zhu, S.: A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45–56 (2015)

    Article  MathSciNet  Google Scholar 

  43. Zhang, H., Liu, F., Anh, V.: Garlerkin finite element approximation of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217, 2534–2545 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Zheng, X., Ervin, V.J., Wang, H.: Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension. Appl. Math. Comput. 361, 98–111 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support of the King Fahd University of Petroleum and Minerals (KFUPM) through the project No. KAUST005 is gratefully acknowledged. Research reported in this publication was also supported by the research funding from the King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Mustapha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustapha, K.A., Furati, K.M., Knio, O.M. et al. A Finite Difference Method for Space Fractional Differential Equations with Variable Diffusivity Coefficient. Commun. Appl. Math. Comput. 2, 671–688 (2020). https://doi.org/10.1007/s42967-020-00066-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00066-6

Keywords

Mathematics Subject Classification

Navigation