Skip to main content
Log in

Multiscale Radiative Transfer in Cylindrical Coordinates

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

The radiative transfer equations in cylindrical coordinates are important in the application of inertial confinement fusion. In comparison with the equations in Cartesian coordinates, an additional angular derivative term appears in the cylindrical case. This term adds great difficulty for a numerical scheme to keep the conservation of total energy. In this paper, based on weighting factors, the angular derivative term is properly discretized, and the interface fluxes in the radial r-direction depend on such a discretization as well. A unified gas kinetic scheme (UGKS) with asymptotic preserving property for the gray radiative transfer equations is constructed in cylindrical coordinates. The current UGKS can naturally capture the radiation diffusion solution in the optically thick regime with the cell size being much larger than photon’s mean free path. At the same time, the current UGKS can present accurate solutions in the optically thin regime as well. Moreover, it is a finite volume method with total energy conservation. Due to the scale-dependent time evolution solution for the interface flux evaluation, the scheme can cover multiscale transport mechanism seamlessly. The cylindrical hohlraum tests in inertial confinement fusion are used to validate the current approach, and the solutions are compared with implicit Monte Carlo result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brunner, T.A.: Forms of Approximate Radiation Transport. Technical Report SAND2002-1778, Sandia National Laboratories (2002)

  2. Chen, S.Z., Xu, K., Lee, C.B., Cai, Q.D.: A unified gas kinetic scheme with moving mesh and velocity space adaptation. J. Comput. Phys. 231, 6643–6664 (2012)

    Article  MathSciNet  Google Scholar 

  3. Fleck JR, J.A., Cummings, J.D.: An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport. J. Comput. Phys. 8, 313–342 (1971)

    Article  MathSciNet  Google Scholar 

  4. Gentile, N.A.: Implicit Monte Carlo diffusion—an accerlation method for Monte Carlo time-dependent radiative transfer simulations. J. Comput. Phys. 172, 543–571 (2001)

    Article  MATH  Google Scholar 

  5. Huang, J.C., Xu, K., Yu, P.B.: A unified gas-kinetic scheme for continuum and rarefied flows II: multi-dimensional cases. Commun. Comput. Phys. 12, 662–690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, S., Levermore, C.D.: The discrete-ordinate method in diffusive regimes. Transp. Theory Stat. Phys. 20, 413–439 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jin, S., Levermore, C.D.: Fully discrete numerical transfer in diffusive regimes. Transp. Theory Stat. Phys. 22, 739–791 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, S., Pareschi, L., Toscani, G.: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38, 913–936 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klar, A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35, 1073–1094 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Larsen, A.W., Morel, J.E.: Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. II. J. Comput. Phys. 83, 212–236 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Larsen, E.W., Pomraning, G.C., Badham, V.C.: Asymptotic analysis of radiative transfer problems. J. Quant. Spectrosc. Radiat. Transf. 29, 285–310 (1983)

    Article  Google Scholar 

  12. Larsen, A.W., Morel, J.E., Miller Jr., W.F.: Asymptotic solutions of numerical transport problems in optically thick, diffusiive regimes. J. Comput. Phys. 69, 283–324 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, C.E.: The Discrete \(S_N\) Approximation to Transport Theory, LA-2595 (1962)

  14. Li, S., Li, G., Tian, D.F., Deng, L.: An implicit Monte Carlo method for thermal radiation transport. Acta Phys. Sin. 62, 249501 (2013)

    Google Scholar 

  15. Liu, C., Xu, K.: A unified gas kinetic scheme for continuum and rarefied flows V: multiscale and multi-component plasma transport. Commun. Comput. Phys. 22, 1175–1223 (2017)

    Article  MathSciNet  Google Scholar 

  16. McClarren, R.G., Hauckb, C.D.: Simulating radiative transfer with filtered spherical harmonics. Phys. Lett. A. 374, 2290–2296 (2010)

    Article  MATH  Google Scholar 

  17. Mieussens, L.: On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic model. J. Comput. Phys. 253, 138–156 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Morel, J.E., Montry, G.R.: Analysis and elimination of the discrete ordinates flux dip. Transp. Theory Stat. Phys. 13, 615–633 (1984)

    Article  Google Scholar 

  19. Sun, W.J., Jiang, S., Xu, K.: An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations. J. Comput. Phys. 285, 265–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, W.J., Jiang, S., Xu, K., Li, S.: An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations. J. Comput. Phys. 302, 222–238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, W.J., Zeng, Q.H., Li, S.G.: The asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations on distorted quadrilateral meshes. Ann. Differ. Eqs. 2, 141–165 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Sun, W.J., Jiang, S., Xu, K.: An implicit unified gas kinetic scheme for radiative transfer with equilibrium and non-equilibrium diffusive limits. Commun. Comput. Phys. 22, 899–912 (2017)

    Article  MathSciNet  Google Scholar 

  23. Sun, W.J., Jiang, S., Xu, K.: A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh. J. Comput. Phys. 351, 455–472 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. van Leer, B.: Towards the ultimate conservative difference schemes V. A second-order sequal to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  MATH  Google Scholar 

  25. Xu, K., Huang, J.C.: A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229, 7747–7764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all referees for their useful suggestions to improve the current paper. The research of Sun is supported by NSFC (Grant nos. 11671048, 91630310) and CAEP Project (2015B0202041, 2015B0202040); Jiang is supported by the National Basic Research Program under Grant 2014CB745002 and NSFC (Grant no. 11631008); and Xu is supported by Hong Kong research Grant council (16206617,16207715) and NSFC (Grant nos. 11772281,91530319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Jiang, S. & Xu, K. Multiscale Radiative Transfer in Cylindrical Coordinates. Commun. Appl. Math. Comput. 1, 117–139 (2019). https://doi.org/10.1007/s42967-019-0007-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-0007-x

Keywords

Mathematics Subject Classification

Navigation