Skip to main content
Log in

High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this article, some high-order local discontinuous Galerkin (LDG) schemes based on some second-order \( \theta \) approximation formulas in time are presented to solve a two-dimensional nonlinear fractional diffusion equation. The unconditional stability of the LDG scheme is proved, and an a priori error estimate with \(O(h^{k+1}+\varDelta t^2)\) is derived, where \(k\geqslant 0\) denotes the index of the basis function. Extensive numerical results with \(Q^k(k=0,1,2,3)\) elements are provided to confirm our theoretical results, which also show that the second-order convergence rate in time is not impacted by the changed parameter \(\theta\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baleanu D., Diethelm K., Scalas E., Trujillo J.J.: Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, New York (2012)

  2. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin finite element method for convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional diffusion wave equation. Numer. Algor. 73(2), 445–476 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Deng, W.H., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Du, Y.W., Liu, Y., Li, H., Fang, Z.C., He, S.: Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344, 108–126 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Feng, L.B., Zhuang, P., Liu, F.W., Turner, I., Gu, Y.T.: Finite element method for space–time fractional diffusion equation. Numer. Algor. 72, 749–767 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Gao, F., Qiu, J., Zhang, Q.: Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation. J. Sci. Comput. 41, 436–460 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    MathSciNet  Google Scholar 

  11. Jin, B.T., Lazarov, R., Liu, Y.K., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Li C.P., Wang Z.: The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. Math. Comput. Simul. 169, 51–73 (2020)

  13. Li, C., Liu, S.M.: Local discontinuous Galerkin scheme for space fractional Allen–Cahn equation. Commun. Appl. Math. Comput. 2(1), 73–91 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Li, C.P., Cai, M.: Theory and Numerical Approximation of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019)

    Google Scholar 

  15. Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38(15/16), 3802–3821 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Li, C.P., Wang, Z.: The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: numerical analysis. Appl. Numer. Math. 140, 1–22 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Li, J.C., Huang, Y.Q., Lin, Y.P.: Developing finite element methods for Maxwells equations in a Cole–Cole dispersive medium. SIAM J. Sci. Comput. 33(6), 3153–3174 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Lin, Z., Liu, F.W., Wang, D.D., Gu, Y.T.: Reproducing kernel particle method for two-dimensional time–space fractional diffusion equations in irregular domains. Eng. Anal. Bound. Elem. 97, 131–143 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Liu, F.W., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Du, Y.W., Li, H., Li, J.C., He, S.: A two-grid mixed finite element method for a nonlinear fourth-order reaction–diffusion problem with time-fractional derivative. Comput. Math. Appl. 70(10), 2474–2492 (2015)

    MathSciNet  Google Scholar 

  21. Liu, Y., Du, Y.W., Li, H., Wang, J.F.: A two-grid finite element approximation for a nonlinear time fractional cable equation. Nonlinear Dyn. 85, 2535–2548 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Liu, Y., Zhang, M., Li, H., Li, J.C.: High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6), 1298–1314 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Liu, Z., Cheng, A., Li, X., Wang, H.: A fast solution technique for finite element discretization of the space–time fractional diffusion equation. Appl. Numer. Math. 119, 146–163 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Liu, N., Liu, Y., Li, H., Wang, J.F.: Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. Comput. Math. Appl. 75(10), 3521–3536 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Du, Y.W., Li, H., Liu, F.W., Wang, Y.J.: Some second-order \(\theta\) schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algor. 80(2), 533–555 (2019). https://doi.org/10.1007/s11075-018-0496-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Machado, J.A.T.: A probabilistic interpretation of the fractional-order differentiation. Fract. Calc. Appl. Anal. 6(1), 73–80 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Mao, Z., Karniadakis, G.E.: Fractional Burgers equation with nonlinear non-locality: spectral vanishing viscosity and local discontinuous Galerkin methods. J. Comput. Phys. 336, 143–163 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Moghaddam, P., Machado, J.A.T.: A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract. Calc. Appl. Anal. 20(4), 1023–1042 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Mustapha, K., McLean, M.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algor. 56, 159–184 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, New York (1998)

    MATH  Google Scholar 

  32. Shi, D.Y., Yang, H.: A new approach of superconvergence analysis for two-dimensional time fractional diffusion equation. Comput. Math. Appl. 75(8), 3012–3023 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differ. Equ. 32(3), 970–1001 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Wang, Z., Vong, S.W.: Compact difference schemes for the modified anomalous fractional subdiffusion equation and the fractional diffusion–wave equation. J. Comput. Phys. 277, 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Wang, Y.J., Liu, Y., Li, H., Wang, J.F.: Finite element method combined with second-order time discrete scheme for nonlinear fractional cable equation. Eur. Phys. J. Plus. 131, 61 (2016). https://doi.org/10.1140/epjp/i2016-16061-3

    Article  Google Scholar 

  37. Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Yin B.L., Liu Y., Li H., Zhang Z.M.: Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations, arXiv:1906.01242 (2019)

  39. Yin B.L., Liu Y., Li H.: A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. Appl. Math. Comput. 368, 124799 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Yin, B.L., Liu, Y., Li, H., He, S.: Fast algorithm based on TT-M FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379, 351–372 (2019)

    MathSciNet  Google Scholar 

  41. Yuste, S.B., Quintana-Murillo, J.: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. Numer. Algor. 71(1), 207–228 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Zeng, F.H., Liu, F.W., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Zhao, Y., Bu, W., Huang, J., Liu, D.Y., Tang, Y.: Finite element method for two-dimensional space-fractional advection-dispersion equations. Appl. Math. Comput. 257, 553–565 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Zhao, Z., Zheng, Y., Guo, P.: A Galerkin finite element method for a class of time–space fractional differential equation with nonsmooth data. J. Sci. Comput. 70, 386–406 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Zheng Y., Zhao Z.: The time discontinuous space–time finite element method for fractional diffusion–wave equation. Appl. Numer. Math. https://doi.org/10.1016/j.apnum.2019.09.007 (2019)

  46. Zheng, Y.Y., Li, C.P., Zhao, Z.G.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59(5), 1718–1726 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Zheng, M., Liu, F.W., Anh, V., Turner, I.: A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40(7), 4970–4985 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two anonymous referees and editor for their valuable comments which greatly improved the presentation of the paper. This work is supported by the National Natural Science Foundation of China (11661058, 11761053), the Natural Science Foundation of Inner Mongolia (2017MS0107), and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-17-A07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, Y. & Li, H. High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation. Commun. Appl. Math. Comput. 2, 613–640 (2020). https://doi.org/10.1007/s42967-019-00058-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00058-1

Keywords

Mathematics Subject Classification

Navigation