Skip to main content
Log in

A Third-Order Accurate Wave Propagation Algorithm for Hyperbolic Partial Differential Equations

Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Cite this article


We extend LeVeque’s wave propagation algorithm, a widely used finite volume method for hyperbolic partial differential equations, to a third-order accurate method. The resulting scheme shares main properties with the original method, i.e., it is based on a wave decomposition at grid cell interfaces, it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  1. Arora, M., Roe, P.L.: A well behaved TVD limiter for high resolution calculations of unsteady flows. J. Comput. Phys. 132, 2–11 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bale, D.S., LeVeque, R.J., Mitran, S., Rossmanith, J.A.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24, 955–978 (2003)

    Article  MathSciNet  Google Scholar 

  3. Buchmüller, P., Helzel, C.: Improved accuracy of high-order WENO finite volume methods on Cartesian grids. J. Sci. Comput. 61, 82–126 (2014)

    Article  MathSciNet  Google Scholar 

  4. Buchmüller, P., Dreher, J., Helzel, C.: Finite volume WENO methods for hyperbolic conservation laws on Cartesian grids with adaptive mesh refinement. Appl. Math. Comput. 272, 460–478 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Calhoun, D.A., Burstedde, C.: ForestClaw: a parallel algorithm for patch-based adaptive mesh refinement on a forest of quadtrees. arXiv:1703.03116v1 (2017)

  6. Calhoun, D.A., Helzel, C., LeVeque, R.J.: Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains. SIAM Rev. 50, 723–752 (2008)

    Article  MathSciNet  Google Scholar 

  7. Costa, A., Macedonio, G.: Numerical simulation of lava flows based on depth-averaged equations. Geophys. Res. Lett. 32, L05304 (2005)

    Google Scholar 

  8. Daru, V., Tenaud, C.: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys. 193, 563–594 (2004)

    Article  MathSciNet  Google Scholar 

  9. Eymann, T.A., Roe, P.L.: Multidimensional active flux schemes. In: 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, June 24–27, 2013. pp. 2013–2940, AIAA (2013)

  10. Fogarty, T.R., LeVeque, R.J.: High-resolution finite volume methods for acoustic waves in periodic and random media. J. Acoust. Soc. Am. 106, 17–28 (1999)

    Article  Google Scholar 

  11. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co., Singapore (2010)

    MATH  Google Scholar 

  12. Helzel, C., Rossmanith, J.A., Taetz, B.: An unstaggered constrained transport method for the 3d ideal magnetohydrodynamics equations. J. Comput. Phys. 230, 3803–3829 (2011)

    Article  MathSciNet  Google Scholar 

  13. Jia, H., Li, K.: A third accurate operator splitting method. Math. Comput. Modell. 53, 387–396 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ketcheson, D.L., LeVeque, R.J.: WENOCLAW: a high order wave propagation method. In: Benzoni-Gavage, S., Serre, D. (eds.) Hyperbolic Problems: Theory, Numerics, Applications, pp. 609–616. Springer, Berlin (2008)

    Chapter  Google Scholar 

  15. Langseth, J.O., LeVeque, R.J.: A wave-propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165, 126–166 (2000)

    Article  MathSciNet  Google Scholar 

  16. LeVeque, R.J.: CLAWPACK Software.

  17. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627–665 (1996)

    Article  MathSciNet  Google Scholar 

  18. LeVeque, R.J.: Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131, 327–357 (1997)

    Article  Google Scholar 

  19. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, New York (2002)

  20. LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modelling with adaptively refined finite volume methods. Acta Numer. 20, 211–289 (2011)

    Article  MathSciNet  Google Scholar 

  21. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  22. Roe, P.L.: Is discontinuous reconstruction really a good idea? J. Sci. Comput. 73, 1094–1114 (2017)

    Article  MathSciNet  Google Scholar 

  23. Roe, P.L.: Chapter 3—multidimensional upwinding. In: Abgrall R., Shu C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems: Applied and Modern Issues, vol. 18, pp. 53–80. Elsevier B.V., Netherlands (2017)

    Chapter  Google Scholar 

  24. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  Google Scholar 

  25. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  26. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998)

    Article  MathSciNet  Google Scholar 

  27. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order godunov approach. J. Sci. Comput. 17, 609–618 (2002)

    Article  MathSciNet  Google Scholar 

  28. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)

    Book  Google Scholar 

  29. Weekes, S.L.: Numerical computation of wave propagation in dynamic materials. Appl. Numer. Math. 37, 417–440 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christiane Helzel.

Additional information

This work was supported by the DFG through HE 4858/4-1.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helzel, C. A Third-Order Accurate Wave Propagation Algorithm for Hyperbolic Partial Differential Equations. Commun. Appl. Math. Comput. 2, 403–427 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification