Skip to main content
Log in

T-Jordan Canonical Form and T-Drazin Inverse Based on the T-Product

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we investigate the tensor similarity and propose the T-Jordan canonical form and its properties. The concepts of the T-minimal polynomial and the T-characteristic polynomial are proposed. As a special case, we present properties when two tensors commute based on the tensor T-product. We prove that the Cayley–Hamilton theorem also holds for tensor cases. Then, we focus on the tensor decompositions: T-polar, T-LU, T-QR and T-Schur decompositions of tensors are obtained. When an F-square tensor is not invertible with the T-product, we study the T-group inverse and the T-Drazin inverse which can be viewed as the extension of matrix cases. The expressions of the T-group and T-Drazin inverses are given by the T-Jordan canonical form. The polynomial form of the T-Drazin inverse is also proposed. In the last part, we give the T-core-nilpotent decomposition and show that the T-index and T-Drazin inverses can be given by a limit process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  2. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses Theory and Applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  3. Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433, 1241–1253 (2010)

    Article  MathSciNet  Google Scholar 

  4. Brazell, M., Li, N., Navasca, C., Tamon, C.: Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 34, 542–570 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bu, C., Zhang, X., Zhou, J., Wang, W., Wei, Y.: The inverse, rank and product of tensors. Linear Algebra Appl. 446, 269–280 (2014)

    Article  MathSciNet  Google Scholar 

  6. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  7. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  8. Chan, T., Yang, Y., Hsuan, Y.: Polar \(n\)-complex and \(n\)-bicomplex singular value decomposition and principal component pursuit. IEEE Trans. Signal Process. 64, 6533–6544 (2016)

    Article  MathSciNet  Google Scholar 

  9. Davis, P.J.: Circulant Matrices. Wiley, New York (1979)

    MATH  Google Scholar 

  10. Drazin, M.P.: Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly 65, 506–514 (1958)

    Article  MathSciNet  Google Scholar 

  11. Gleich, D.F., Chen, G., Varah, J.M.: The power and Arnoldi methods in an algebra of circulants. Numer. Linear Algebra Appl. 20, 809–831 (2013)

    Article  MathSciNet  Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore, MD (2013)

    MATH  Google Scholar 

  13. Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor–tensor decompositions. SIAM J. Imaging Sci. 6, 437–463 (2013)

    Article  MathSciNet  Google Scholar 

  14. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  15. Horn, A.R., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  16. Horn, A.R., Johnson, C.R.: Topics in Matrix Analysis. Corrected reprint of the 1991 original. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  17. Hu, W., Yang, Y., Zhang, W., Xie, Y.: Moving object detection using tensor-based low-rank and saliently fused-sparse decomposition. IEEE Trans. Image Process. 26, 724–737 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ji, J., Wei, Y.: The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput. Math. Appl. 75, 3402–3413 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jin, H., Bai, M., Bentez, J., Liu, X.: The generalized inverses of tensors and an application to linear models. Comput. Math. Appl. 74, 385–397 (2017)

    Article  MathSciNet  Google Scholar 

  20. Jin, X.: Developments and Applications of Block Toeplitz Iterative Solvers. Science Press, Beijing and Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  21. Kernfeld, E., Kilmer, M., Aeron, S.: Tensor–tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)

    Article  MathSciNet  Google Scholar 

  23. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  24. Kong, H., Xie, X., Lin, Z.: \(t\)-Schatten-\(p\) norm for low-rank tensor recovery. IEEE Journal of Selected Topics in Signal Processing. 12, 1405–1419 (2018)

    Article  Google Scholar 

  25. Liu, Y., Chen, L., Zhu, C.: Improved robust tensor principal component analysis via low-rank core matrix. IEEE Journal of Selected Topics in Signal Processing 12, 1378–1389 (2018)

    Article  Google Scholar 

  26. Long, Z., Liu, Y., Chen, L., Zhu C.: Low rank tensor completion for multiway visual data. Signal Processing 155, 301–316 (2019)

    Article  Google Scholar 

  27. Lund, K.: The tensor \(t\)-function: a definition for functions of third-order tensors. ArXiv preprint, arXiv:1806.07261 (2018)

  28. Luo, Z., Qi, L., Toint, Ph. L.: Bernstein concentration inequalities for tensors via Einstein products. Arxiv preprint, arXiv:1902.03056 (2019)

  29. Ma, H., Li, N., Stanimirović, P., Katsikis, V.: Perturbation theory for Moore–Penrose inverse of tensor via Einstein product. Comput. Appl. Math. 38(3), Art. 111, 24 (2019). https://doi.org/10.1007/s40314-019-0893-6

  30. Martin, C.D., Shafer, R., Larue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35, A474–A490 (2013)

    Article  MathSciNet  Google Scholar 

  31. Miao, Y., Qi, L., Wei, Y.: Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl. 590, 258–303 (2020)

  32. Newman, E., Horesh, L., Avron, H., Kilmer, M.: Stable tensor neural networks for rapid deep learning. arXiv preprint, arXiv:1811.06569 (2018)

  33. Sahoo, J., Behera, R., Stanimirović, P. S., Katsikis, V. N., Ma, H.: Core and core-EP inverses of tensors. Comput. Appl. Math. 39(1), Art. 9 (2020)

  34. Stanimirović, P.S., Ćirić, M., Katsikis, V.N., Li, C., Ma, H.: Outer and (b, c) inverses of tensors. Linear Multilinear Algebra (2018). https://doi.org/10.1080/03081087.2018.1521783

  35. Semerci, O., Hao, N., Kilmer, M.E., Miller, E.L.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23, 1678–1693 (2014)

    Article  MathSciNet  Google Scholar 

  36. Soltani, S., Kilmer, M.E., Hansen, P.C.: A tensor-based dictionary learning approach to tomographic image reconstruction. BIT Numerical Mathematics 56, 1425–1454 (2016)

    Article  MathSciNet  Google Scholar 

  37. Sun, L., Zheng, B., Bu, C., Wei, Y.: Moore–Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 64, 686–698 (2016)

    Article  MathSciNet  Google Scholar 

  38. Tarzanagh, D.A., Michailidis, G.: Fast randomized algorithms for t-product based tensor operations and decompositions with applications to imaging data. SIAM J. Imag. Sci. 11, 2629–2664 (2018)

    Article  MathSciNet  Google Scholar 

  39. Wang, A., Lai, Z., Jin, Z.: Noisy low-tubal-rank tensor completion. Neurocomputing 330, 267–279 (2019)

    Article  Google Scholar 

  40. Wang, G., Wei, Y., Qiao, S.: Generalized Inverses: Theory and Computations, Developments in Mathematics 53. Science Press, Beijing and Springer, Singapore (2018)

    Book  Google Scholar 

  41. Wei, Y., Wang, G.: The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl. 258, 179–186 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and two referees for their detailed comments. Discussions with Prof. C. Ling, Prof. Ph. Toint, Prof. Z. Huang along with his team members, Dr. W. Ding, Dr. Z. Luo, Dr. X. Wang, and Mr. C. Mo are very helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wei.

Additional information

Y. Miao is supported by the National Natural Science Foundation of China (Grant No. 11771099). L. Qi is supported by the Hong Kong Research Grant Council (Grant Nos. PolyU 15302114, 15300715, 15301716 and 15300717). Y. Wei is supported by the Innovation Program of Shanghai Municipal Education Commission.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Qi, L. & Wei, Y. T-Jordan Canonical Form and T-Drazin Inverse Based on the T-Product. Commun. Appl. Math. Comput. 3, 201–220 (2021). https://doi.org/10.1007/s42967-019-00055-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00055-4

Keywords

Mathematics Subject Classification

Navigation