Skip to main content
Log in

Single-Step Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Method for 1-D Euler Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We propose an explicit, single-step discontinuous Galerkin method on moving grids using the arbitrary Lagrangian–Eulerian approach for one-dimensional Euler equations. The grid is moved with the local fluid velocity modified by some smoothing, which is found to considerably reduce the numerical dissipation introduced by Riemann solvers. The scheme preserves constant states for any mesh motion and we also study its positivity preservation property. Local grid refinement and coarsening are performed to maintain the mesh quality and avoid the appearance of very small or large cells. Second, higher order methods are developed and several test cases are provided to demonstrate the accuracy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Notes

  1. We suppress the time variable for clarity of notation.

  2. We drop the superscript \(^n\) in some of these expressions.

References

  1. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Notices R. Astron. Soc. 401(2), 791–851 (2010)

    Article  Google Scholar 

  2. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H.C., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229(4), 1213–1237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Munz, C.D.: On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Num. Anal. 31(1), 17–42 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carré, G., Del Pino, S., Després, B., Labourasse, E.: A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys. 228(14), 5160–5183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Maire, P.-H.: A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J. Comput. Phys. 228(7), 2391–2425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974)

    Article  MATH  Google Scholar 

  7. Donea, J., Huerta, A., Ponthot, J.-P., Rodríguez-Ferran, A.: Arbitrary Lagrangian–Eulerian Methods. Wiley, Oxford (2004)

    Book  Google Scholar 

  8. Walter, B.: High order accurate direct arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for non-conservative hyperbolic systems with stiff source terms. Commun. Comput. Phys. 21(01), 271–312 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaburro, E., Castro, M.J., Dumbser, M.: Well-balanced arbitrary-Lagrangian–Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity. Mon. Notices R. Astron. Soc. 477(2), 2251–2275 (2018). https://doi.org/10.1093/mnras/sty542. 21 June

    Article  Google Scholar 

  10. Lomtev, I., Kirby, R., Karniadakis, G.: A discontinuous Galerkin ALE method for compressible viscous flows in moving domains. J. Comput. Phys. 155(1), 128–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Venkatasubban, C.S.: A new finite element formulation for ALE (arbitrary Lagrangian Eulerian) compressible fluid mechanics. Int. J. Eng. Sci. 33(12), 1743–1762 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, L., Persson, P.-O.: High-order discontinuous Galerkin simulations on moving domains using ALE formulations and local remeshing and projections. American Institute of Aeronautics and Astronautics (2015)

  13. Weizhang, H., Russell, R.D.: Adaptive Moving Mesh Methods. Applied Mathematical Sciences. Springer, Berlin (2011)

    MATH  Google Scholar 

  14. He, P., Tang, H.: An adaptive moving mesh method for two-dimensional relativistic hydrodynamics. Commun. Comput. Phys. 11(1), 114–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, H., Baum, J.D., Löhner, R.: On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194(1), 304–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boscheri, W., Dumbser, M., Balsara, D.S.: High-order ADER-WENO ALE schemes on unstructured triangular meshes–application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Meth. Fluids 76, 737–778 (2014). https://doi.org/10.1002/fld.3947

    Article  MathSciNet  Google Scholar 

  17. Luo, H., Baum, J.D., Löhner, R.: On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194, 304–328 (2004). https://doi.org/10.1016/j.jcp.2003.09.026

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, W., Cheng, J., Shu, C.-W.: High order conservative Lagrangian schemes with Lax–Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228(23), 8872–8891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian–Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 14(5), 1174–1206 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boscheri, W., Dumbser, M.: High order accurate direct arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes. Comput. Fluids 136, 48–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boscheri, W., Dumbser, M., Balsara, D.S.: High-order ADER-WENO ALE schemes on unstructured triangular meshes–application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Num. Methods Fluids 76, 737–778 (2014)

    Article  MathSciNet  Google Scholar 

  22. Klingenberg, C., Schnücke, G., Xia, Y.: Arbitrary Lagrangian–Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension. Math. Comput. 86, 1203–1232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 253–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.-D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230(11), 4232–4247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Owren, B., Zennaro, M.: Derivation of efficient, continuous, explicit Runge–Kutta methods. SIAM J. Sci. Stat. Comput. 13(6), 1488–1501 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232(1), 397–415 (2013)

    Article  MathSciNet  Google Scholar 

  30. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Titarev, V.A., Toro, E.F.: Finite volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  34. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Loubere, R., Shashkov, M.J.: A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian–Eulerian methods. J. Comput. Phys. 209(1), 105–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Olivier, G., Alauzet, F.: A new changing-topology ALE scheme for moving mesh unsteady simulations. In: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 474 (2011)

  38. Frederic, Alauzet: A changing-topology moving mesh technique for large displacements. Eng. Comput. 30(2), 175–200 (2014)

    Article  Google Scholar 

  39. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was started when Jayesh Badwaik was a project assistant at TIFR-CAM, Bangalore. The first two authors gratefully acknowledge the financial support received from the Airbus Foundation Chair on Mathematics of Complex Systems established in TIFR-CAM, Bangalore, for carrying out this work. Christian Klingenberg acknowledges the support of the Priority Program 1648: Software for Exascale Computing by the German Science Foundation. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Klingenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 93 KB)

Supplementary material 2 (pdf 60 KB)

Appendices

Appendix A: Numerical Flux

The ALE scheme requires a numerical flux \(\hat{\varvec{g}}(\varvec{u}_l,\varvec{u}_r,w)\) which is usually based on some approximate Riemann solver. The numerical flux function is assumed to be consistent in the sense that

$$\begin{aligned} \hat{\varvec{g}}(\varvec{u}, \varvec{u}, w) = \varvec{g}(\varvec{u},w), \qquad \forall\,\varvec{u}\in \mathbb {R}^3, w \in \mathbb {R}.\end{aligned}$$

Since the ALE versions of the numerical fluxes are not so well known, here we list the formulae used in the present work.

1.1 Rusanov Flux

The Rusanov flux is a variant of the Lax–Friedrich flux and is given by

$$\begin{aligned} \hat{\varvec{g}}(\varvec{u}_l,\varvec{u}_r,w) = \frac{1}{2}[ \varvec{g}(\varvec{u}_l,w) + \varvec{g}(\varvec{u}_r,w)] - \frac{1}{2}\lambda _{lr} (\varvec{u}_r - \varvec{u}_l), \end{aligned}$$

where \(\lambda _{lr} = \lambda (\varvec{u}_l,\varvec{u}_r,w),\)

$$\begin{aligned} \lambda (\varvec{u}_l,\varvec{u}_r,w) = \max \{ |v_l - w|+c_l, |v_r - w|+c_r \}, \end{aligned}$$

which is an estimate of the largest wave speed in the Riemann problem. Since the mesh velocity is close to the fluid velocity, the value of \(\lambda\) is close to the local sound speed. Thus, the numerical dissipation is independent of the velocity scale.

1.2 Roe Flux

The Roe scheme [39] is based on a local linearization of the conservation law and then exactly solving the Riemann problem for the linear approximation. The flux can be written as

$$\begin{aligned} \hat{\varvec{g}}(\varvec{u}_l,\varvec{u}_r,w) = \frac{1}{2}[ \varvec{g}(\varvec{u}_l,w) + \varvec{g}(\varvec{u}_r,w)] - \frac{1}{2}|A_w| (\varvec{u}_r - \varvec{u}_l), \end{aligned}$$

where the Roe average matrix \(A_w = A_w(\varvec{u}_l,\varvec{u}_r)\) satisfies

$$\begin{aligned} \varvec{g}(\varvec{u}_r,w) - \varvec{g}(\varvec{u}_l,w) = A_w (\varvec{u}_r - \varvec{u}_l), \end{aligned}$$

and we define \(|A_w| = R |\varLambda -wI| R^{-1}\). This matrix is evaluated at the Roe average state \(\varvec{u}({\bar{\varvec{q}}})\), \({\bar{\varvec{q}}}=\frac{1}{2}(\varvec{q}_l + \varvec{q}_r)\), where \(\varvec{q}=\sqrt{\rho }[1, \ v, \ H]^{\text{T}}\) is the parameter vector introduced by Roe.

1.3 HLLC Flux

This is based on a three wave approximate Riemann solver and the particular ALE version we use can also be found in [15]. Define the relative velocity \(q= v - w\); then, the numerical flux is given by

$$\begin{aligned} \hat{\varvec{g}}(\varvec{u}_l,\varvec{u}_r,w) = {\left\{ \begin{array}{ll} \varvec{g}(\varvec{u}_l,w), &{} S_l > 0, \\ \varvec{g}^*(\varvec{u}_l^*,w), &{} S_l \le 0< S_M, \\ \varvec{g}^*(\varvec{u}_r^*,w), &{} S_M \le 0 \le S_r, \\ \varvec{g}(\varvec{u}_r,w), &{} S_r < 0, \end{array}\right. } \end{aligned}$$

where the intermediate states are given by

$$\begin{aligned} \varvec{u}_\alpha ^* = \frac{1}{S_\alpha - S_M} \begin{bmatrix} (S_\alpha - q_\alpha ) \rho _\alpha \\ (S_\alpha - q_\alpha )(\rho v)_\alpha + p^* - p_\alpha \\ (S_\alpha - q_\alpha ) E_\alpha - p_\alpha q_\alpha + p^* S_M \end{bmatrix}, \qquad \alpha =l,r, \end{aligned}$$

and

$$\begin{aligned} \varvec{g}^*(\varvec{u},w) = S_M \varvec{u}+ \begin{bmatrix} 0 \\ p^* \\ (S_M + w) p^* \end{bmatrix}, \end{aligned}$$

where

$$\begin{aligned} p^* = \rho _l (q_l - S_l) (q_l - S_M) + p_l = \rho _r (q_r - S_r)(q_r - S_M) + p_r, \end{aligned}$$

which gives \(S_M\) as

$$\begin{aligned} S_M = \frac{ \rho _r q_r (S_r - q_r) - \rho _l q_l (S_l - q_l) + p_l - p_r}{\rho _r (S_r - q_r) - \rho _l (S_l - q_l)}. \end{aligned}$$

The signal velocities are defined as

$$\begin{aligned} S_l = \min \{ q_l - c_l, {\hat{v}}-w-{\hat{c}}\}, \qquad S_r = \max \{ q_r + c_r, {\hat{v}}-w+{\hat{c}}\}, \end{aligned}$$

where \({\hat{v}}\), \({\hat{c}}\) are Roe’s average velocity and speed of sound.

Appendix B: Continuous Expansion Runge–Kutta (CERK) Schemes

We use a Runge–Kutta scheme to compute the predicted solution used to compute all the integrals in the DG scheme. In this section, we list down the CERK scheme for the following ODE:

$$\begin{aligned} \frac{\text {d}u}{\text {d}t} = f(u,t). \end{aligned}$$

Given the solution \(u^n\) at time \(t_n\), the CERK scheme gives a polynomial solution in the time interval \([t_n, t_{n+1})\) of the form

$$\begin{aligned} u(t_n + \theta h) = u^n + h \sum _{s=1}^{n_s} b_s(\theta ) k_s, \qquad \theta \in [0,1], \end{aligned}$$

where \(n_s\) is the number of stages and h denotes the time step.

1.1 Second Order (CERK2)

The number of stages is \(n_s = 2\) and

$$\begin{aligned} b_1(\theta ) = \theta - \theta ^2/2, \qquad b_2(\theta ) = \theta ^2/2, \end{aligned}$$

and

$$\begin{aligned} k_1 & = f(u^n, t_n), \\ k_2 & = f(u^n + h k_1, t_n + h). \end{aligned}$$

1.2 Third Order (CERK3)

The number of stages is \(n_s = 4\) and

$$\begin{aligned} k_1 & = f(u^n, t_n), \\ k_2 & = f(u^n + (12/23) h k_1, t_n + 12 h /23), \\ k_3 & = f(u^n + h ((-68/375) k_1 + (368/375) k_2), t_n + 4h/5),\\ k_4 & = f(u^n + h ((31/144) k_1 + (529/1\,152) k_2 + (125/384) k_3), t_n + h), \end{aligned}$$

and

$$\begin{aligned} b_1(\theta ) & = (41/72) \theta ^3 - (65/48) \theta ^2 + \theta, \\ b_2(\theta ) & = -(529/576) \theta ^3 + (529/384) \theta ^2, \\ b_3(\theta ) & = -(125/192) \theta ^3 + (125/128) \theta ^2, \\ b_4(\theta ) & = \theta ^3 - \theta ^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badwaik, J., Chandrashekar, P. & Klingenberg, C. Single-Step Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Method for 1-D Euler Equations. Commun. Appl. Math. Comput. 2, 541–579 (2020). https://doi.org/10.1007/s42967-019-00054-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00054-5

Keywords

Mathematics Subject Classification

Navigation