Skip to main content
Log in

Domain Decomposition Preconditioners for Mixed Finite-Element Discretization of High-Contrast Elliptic Problems

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we design an efficient domain decomposition (DD) preconditioner for the saddle-point problem resulting from the mixed finite-element discretization of multiscale elliptic problems. By proper equivalent algebraic operations, the original saddle-point system can be transformed to another saddle-point system which can be preconditioned by a block-diagonal matrix efficiently. Actually, the first block of this block-diagonal matrix corresponds to a multiscale \(H(\mathrm {div})\) problem, and thus, the direct inverse of this block is unpractical and unstable for the large-scale problem. To remedy this issue, a two-level overlapping DD preconditioner is proposed for this \(H(\mathrm {div})\) problem. Our coarse space consists of some velocities obtained from mixed formulation of local eigenvalue problems on the coarse edge patches multiplied by the partition of unity functions and the trivial coarse basis (e.g., Raviart–Thomas element) on the coarse grid. The condition number of our preconditioned DD method for this multiscale \(H(\mathrm {div})\) system is bounded by \(C(1+\frac{H^2}{{\hat{\delta }}^2})(1+\log ^4(\frac{H}{h}))\), where \(\hat{\delta }\) denotes the width of overlapping region, and H, h are the typical sizes of the subdomain and fine mesh. Numerical examples are presented to confirm the validity and robustness of our DD preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arbogast, T.: Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal. 42, 576–598 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbogast, T., Boyd, K.J.: Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal. 44, 1150–1171 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning in \(H(\text{div})\) and applications. Math. Comp. 66, 957–984 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Araya, R., Harder, C., Paredes, D., Valentin, F.: Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51, 3505–3531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Osborn, J.E.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Christie, M., Blunt, M.J.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Res. Eval. Eng. 4, 308–317 (2001)

    Article  Google Scholar 

  8. Chung, E.T., Efendiev, Y., Lee, C.S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13, 338–366 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp. 72, 541–576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z.X., Huan, G.R., Ma, Y.L.: Computational Methods for Multiphase Flows in Porous Media, vol. 2, SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  11. Dolean, V., Nataf, F., Scheichl, R., Spillane, N.: Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12, 391–414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  14. Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8, 1461–1483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul. 8, 1621–1644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale PDEs. Numer. Math. 106, 589–626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hellman, F., Målqvist, A.: Contrast independent localization of a multiscale problems. Multiscale Model. Simul. 15, 1325–1355 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hiptmair, R.: Multigrid method for H(\(\text{ div }\)) in three dimensions. Electron. Trans. Numer. Anal. 6, 133–152 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in \(H(\text{curl})\) and \(H(\text{div})\) spaces. SIAM J. Numer. Anal. 45, 2483–2509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, Q.Y., Shu, S., Zou, J.: A discrete weighted Helmholtz decomposition and its application. Numer. Math. 125, 153–189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jenny, P., Lee, S.H., Tchelepi, H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)

    Article  MATH  Google Scholar 

  25. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comp. 83, 2583–2603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mathew, T.P.: Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part \({\text{ I }}\): algorithms and numerical results. Numer. Math. 65, 445–468 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mathew, T.P.: Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part \(\text{ II }\): convergence theory. Numer. Math. 65, 469–492 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oh, D.S.: An overlapping schwarz algorithm for Raviart–Thomas vector fields with discontinuous coefficients. SIAM J. Numer. Anal. 51, 297–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rusten, T., Winther, R.: A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl. 13, 887–904 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126, 741–770 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spillane, N., Rixen, D.J.: Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Methods Eng. 95, 953–990 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Toselli, A., Widlund, O.B.: Domain Decomposition Methods—Algorithms and Theory, vol. 34. Springer, New York (2005)

    Book  MATH  Google Scholar 

  34. Vassilevski, P.S., Lazarov, R.D.: Preconditioning mixed finite element saddle-point elliptic problems. Numer. Linear Algebra Appl. 3, 1–20 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vassilevski, P.S., Wang, J.P.: Multilevel iterative methods for mixed finite element discretizations of elliptic problems. Numer. Math. 63, 503–520 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wohlmuth, B.I., Toselli, A., Widlund, O.B.: An iterative substructuring method for Raviart–Thomas vector fields in three dimensions. SIAM J. Numer. Anal. 37, 1657–1676 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xie, H., Xu, X.: Mass conservative domain decomposition preconditioners for multiscale finite volume method. Multiscale Model. Simul. 12, 1667–1690 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous referees who made many helpful comments and suggestions which lead to an improved presentation of this paper. The work of the second author was supported by the National Natural Science Foundation of China (No. 11671302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Xu, X. Domain Decomposition Preconditioners for Mixed Finite-Element Discretization of High-Contrast Elliptic Problems. Commun. Appl. Math. Comput. 1, 141–165 (2019). https://doi.org/10.1007/s42967-019-0005-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-0005-z

Keywords

Mathematics Subject Classification

Navigation