Skip to main content
Log in

Unconditionally Stable Pressure-Correction Schemes for a Nonlinear Fluid-Structure Interaction Model

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We consider in this paper numerical approximation of a nonlinear fluid-structure interaction (FSI) model with a fixed interface. We construct a new class of pressure-correction schemes for the FSI problem, and prove rigorously that they are unconditionally stable. These schemes are computationally very efficient, as they lead to, at each time step, a coupled linear elliptic system for the velocity and displacement in the whole region and a discrete Poisson equation in the fluid region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Badia, S., Codina, R.: On some fluid-structure iterative algorithms using pressure segregation methods. Application to aeroelasticity. Int. J. Numer. Methods Eng. 72(1), 46–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badia, S., Nobile, F., Vergara, C.: Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227(14), 7027–7051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burman, E., Fernández, M.A.: Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method. C. R. Math. Acad. Sci. Paris 345(8), 467–472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakrabarti, S.K., Hernandez, S., Brebbia, C.A.: Fluid structure interaction and moving boundary problems, volume 43 of Advances in Fluid Mechanics. WIT Press, Southampton, 2005. Edited papers from the 3rd International Conference on Fluid Structure Interaction and the 8th International Conference on Computational Modelling and Experimental Measurements of Free and Moving Boundary Problems held in La Coruna, September 19–21 (2005)

  7. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comp. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, S., Shen, J.: An unconditionally stable rotational velocity-correction scheme for incompressible flows. J. Comput. Phys. 229(19), 7013–7029 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farhat, C., Lesoinne, M., LeTallec, P.: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods Appl. Mech. Eng. 157(1–2), 95–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felippa, C.A., Park, K., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 3247–3270 (2001)

    Article  MATH  Google Scholar 

  11. Fernández, M .A.: Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit. SeMA J 55, 59–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández, M.A., Gerbeau, J.-F., Grandmont, C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69(4), 794–821 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guermond, J.L., Minev, P., Shen, J.: Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions. SIAM J. Numer. Anal. 43(1), 239–258 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73(248), 1719–1737 (2004). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, Y., Nicholls, D.P., Shen, J.: An efficient and stable spectral method for electromagnetic scattering from a layered periodic structure. J. Comput. Phys. 231(8), 3007–3022 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y., Shen, J.: Unconditionally stable pressure-correction schemes for a linear fluid-structure interaction problem. Numer. Math. Theory Methods Appl. 7(4), 537–554 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-structure interaction–a review. Commun. Comput. Phys. 12(2), 337–377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hron, J., Turek, S.: A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics. Springer, Berlin, Heidelberg (2006)

    Book  MATH  Google Scholar 

  20. Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid-structure interaction using space-time finite elements. Comput. Methods Appl. Mech. Eng. 193(23), 2087–2104 (2004)

    Article  MATH  Google Scholar 

  21. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness for a free boundary fluid-structure model. J. Math. Phys. 53(11), 115624 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a nonlinear fluid structure interaction system. J. Differ. Equ. 247(5), 1452–1478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)

    Article  MATH  Google Scholar 

  24. Matthies, H.G., Steindorf, J.: Partitioned strong coupling algorithms for fluid-structure interaction. Comput. Struct. 81, 805–812 (2003)

    Article  Google Scholar 

  25. Pyo, J.-H.: Error estimates for the second order semi-discrete stabilized Gauge-Uzawa method for the Navier-Stokes equations. Int. J. Numer. Anal. Model. 10(1), 24–41 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York (1999)

    MATH  Google Scholar 

  27. Shen, J.: Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires i. Arch. Rat. Mech. Anal. 32, 135–153 (1969)

    Article  MATH  Google Scholar 

  29. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

This work is partially supported by NSF DMS-1620262, DMS-1720442 and AFOSR FA9550-16-1-0102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Shen, J. Unconditionally Stable Pressure-Correction Schemes for a Nonlinear Fluid-Structure Interaction Model. Commun. Appl. Math. Comput. 1, 61–80 (2019). https://doi.org/10.1007/s42967-019-0004-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-0004-0

Keywords

Mathematics subject classification:

Navigation