Skip to main content
Log in

Conservation management of Saraca asoca (Roxb.) W. J. de Wilde (Fabaceae) using ecological niche modeling

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Considering the medicinal and conservational significance of Saraca asoca, the present study employed three different geographical ranges for building ecological niche models. The vifstep procedure detected multicollinearity among 10 out of 19 predictor variables. The selected subset included mean diurnal range, isothermality, mean temperature of wettest quarter, mean temperature of driest quarter, annual precipitation, precipitation of driest month, precipitation seasonality, precipitation of warmest quarter, and precipitation of coldest quarter. The performances of machine learning and regression approaches were compared. Machine learning algorithm RF outweighed all other algorithms in performance. Following RF, model algorithms viz., Maxent, BRT, GLM, FDA, and Bioclim performed better in the declining order. Machine learning algorithms performed better than regression and profile-based approaches. The weighted average of True skill statistic was used to develop ensemble models. Potential habitats in native and introduced ranges in present and future conditions were identified. Introduction potential in unintroduced areas where herbal medicines were in greater use was also assessed. With rise in emissions, range of S. asoca may prefer an eastward expansion in native range and northward expansion in Andaman Nicobar Islands. If S. asoca is planted in recommended potential ranges in African and Latin American continents, eastward expansion in West Africa and westward expansion in Latin America may occur if temperature rises. The present study could develop a robust evidence-based hypothesis for ecologists, conservationists, herbal medicine manufactures, government agencies, and forest departments at national/international level to establish plantations for growing S. asoca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data used in this study are available upon request.

References

  • Abad MJ, Bermejo P, Carretero E, Martínez-Acitores C, Noguera B, Villar A (1996) Antiinflammatory activity of some medicinal plant extracts from Venezuela. J Ethnopharmacol 55:63–68

    Article  CAS  PubMed  Google Scholar 

  • Ahmed N, Atzberger C, Zewdie W (2021) Species distribution modelling performance and its implication for sentinel-2-based prediction of invasive Prosopis juliflora in lower Awash River basin, Ethiopia. Ecol Process 10:1–16

    Article  Google Scholar 

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Article  ADS  Google Scholar 

  • Alexander T (2018) Agrobiodiversity of Kuttanad wetlands in the context of promising agroforestry practices and resource sustainability. Indian J Agrofor 20:73–79

    Google Scholar 

  • Ali N, Nashim NH, Saad B, Safan K, Nakajima M, Yoshizawa T (2005) Evaluation of a method to determine the natural occurrence of aflatoxins in commercial traditional herbal medicines from Malaysia and Indonesia. Food Chem Toxicol 43:1763–1772

    Article  CAS  PubMed  Google Scholar 

  • Araújo MB, Anderson RP, Barbosa AM, Beale CM, Dormann CF, Early R, Garcia RA, Guisan A, Maiorano L, Naimi B (2019) Standards for distribution models in biodiversity assessments. Sci Adv 5:eaat4858. https://doi.org/10.1126/sciadv.aat4858

    Article  PubMed  PubMed Central  Google Scholar 

  • Balde NM, Youla A, Balde MD, Kake A, Diallo MM, Balde MA, Maugendre D (2006) Herbal medicine and treatment of diabetes in Africa: an example from Guinea. Diabetes Metab 32:171–175

    Article  CAS  PubMed  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Beeman SP, Morrison AM, Unnasch TR, Unnasch RS (2021) Ensemble ecological niche modeling of West Nile virus probability in Florida. PLoS ONE 16:e0256868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beena C, Radhakrishnan VV (2012) Quality assessment evaluation of the market samples of important ayurvedic drug asoka bark. Ann Phytomed 1:95–98

    CAS  Google Scholar 

  • Begum N, Ravikumar K, Ved DK (2014) Asoka: an important medicinal plant, its market scenario and conservation measures in India. Curr Sci 107:26–28

    Google Scholar 

  • Bhalerao SA, Verma DR, Didwana VS, Teli NC (2014) Saraca asoca (Roxb.), de. Wild: an overview. Ann Plant Sci 3:770–775

    Google Scholar 

  • Biswas S, Vadrevu KP, Lwin ZM, Lasko K, Justice CO (2015) Factors controlling vegetation fires in protected and non-protected areas of Myanmar. PLoS ONE 10:e0124346

    Article  PubMed  PubMed Central  Google Scholar 

  • Borges P, Phillips MR, Ng K, Medeiros A, Calado H (2014) Preliminary coastal vulnerability assessment for Pico Island (Azores). J Coastal Res 70:385–388

    Article  Google Scholar 

  • Bosso L, Luchi N, Maresi G, Cristinzio G, Smeraldo S, Russo D (2017) Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning. For Ecol Manag 400:655–664

    Article  Google Scholar 

  • Brander LM, Wagtendonk AJ, Hussain SS, McVittie A, Verburg PH, de Groot RS, van der Ploeg S (2012) Ecosystem service values for mangroves in Southeast Asia: a meta-analysis and value transfer application. Ecosyst Serv 1:62–69

    Article  Google Scholar 

  • CAMP workshops on medicinal plants, India (1998) Saraca asoca. The IUCN Red List of Threatened Species

  • Chander MP, Vijayachari P (2018) Ethnomedicinal knowledge among the tribes of the little Andaman Island, Andaman and Nicobar Islands, India. Phcog Mag 14:488–493

    Article  Google Scholar 

  • Chander MP, Kartick C, Gangadhar J, Vijayachari P (2014) Ethno-medicine and healthcare practices among Nicobarese of Car Nicobar—an indigenous tribe of Andaman and Nicobar Islands. J Ethnopharmacol 158:18–24

    Article  PubMed  Google Scholar 

  • Chandra N, Singh G, Lingwal S, Jalal JS, Bisht MS, Pal V, Rawat B, Tiwari L (2021) Ecological niche modeling and status of threatened alpine medicinal plant Dactylorhiza hatagirea D. Don in Western Himalaya. J Sustain For 41:1029–1045. https://doi.org/10.1080/10549811.2021.1923530

    Article  Google Scholar 

  • Chatterjee S, Hadi AS (2006) Regression analysis by example, 4th edn. Wiley

    Book  Google Scholar 

  • De Marco P, Nóbrega CC (2018) Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS ONE 13:e0202403

    Article  PubMed  Google Scholar 

  • DeFilipps RA, Krupnick GA (2018) The medicinal plants of Myanmar. PhytoKeys. https://doi.org/10.3897/phytokeys.102.24380

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert S, Hamad A, Kilawe CJ, Linders TE, Ng WT, Mbaabu PR, Shiferaw H, Witt A, Schaffner U (2020) Niche change analysis as a tool to inform management of two invasive species in eastern Africa. Ecosphere 11:e02987

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  ADS  Google Scholar 

  • Fayiah M (2017) Major causes leading to the destruction of Sierra Leone forest estates. Van Sangyan 4:29–41

    Google Scholar 

  • Fenning TM, Walter C, Gartland KMA (2008) Forest biotech and climate change. Nat Biotechnol 26:615–617

    Article  CAS  PubMed  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Fischer D, Thomas SM, Suk JE, Sudre B, Hess A, Tjaden NB, Beierkuhnlein C, Semenza JC (2013) Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int J Health Geogr 12:1–12

    Article  Google Scholar 

  • Fridley JD, Sax DF (2014) The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob Ecol Biogeogr 23:1157–1166

    Article  Google Scholar 

  • Gaikwad J, Wilson PD, Ranganathan S (2011) Ecological niche modeling of customary medicinal plant species used by Australian Aborigines to identify species-rich and culturally valuable areas for conservation. Ecol Modell 222:3437–3443

    Article  Google Scholar 

  • Garzon F, Graham RT, Witt MJ, Hawkes LA (2020) Ecological niche modeling reveals manta ray distribution and conservation priority areas in the western central Atlantic. Anim Conserv 24:322–334

    Article  Google Scholar 

  • Gómez-Estrada H, Díaz-Castillo F, Franco-Ospina L, Mercado-Camargo J, Guzmán-Ledezma J, Medina JD, Gaitán-Ibarra R (2011) Folk medicine in the northern coast of Colombia: an overview. J Ethnobiol Ethnomed 7:1–11

    Article  Google Scholar 

  • Goncharenko I, Krakhmalnyi M, Velikova V, Ascencio V, Krakhmalnyi A (2021) Ecological niche modeling of toxic dinoflagellate Prorocentrum cordatum in the Black Sea. Ecohydrol Hydrobiol 21:747–759

    Article  Google Scholar 

  • Gonzalez J (1980) Medicinal plants in Colombia. J Ethnopharmacol 2:43–47

    Article  CAS  PubMed  Google Scholar 

  • Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9–17

    Article  ADS  Google Scholar 

  • Haroon MA, Zhang J, Yao F (2016) Drought monitoring and performance evaluation of MODIS-based drought severity index (DSI) over Pakistan. Nat Hazards 84:1349–1366

    Article  Google Scholar 

  • Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387

    Article  PubMed  Google Scholar 

  • Hazra A, Das S (2021) Comparative metabolomics analysis and radical scavenging activity of Saraca asoca (Roxb.) de Wilde flowers in different stages of maturity. Jordan J Biol Sci 14:513–522

    Article  CAS  Google Scholar 

  • Hernández V, Mora F, Meléndez P (2012) A study of medicinal plant species and their ethnomedicinal values in Caparo Barinas, Venezuela. Emir J Food Agric 24:128–132

    Google Scholar 

  • Hijmans RJ (2015) Introduction to the raster package (version 2.5–8). https://mran.microsoft.com/snapshot/2015-03-29/web/packages/raster/vignettes/Raster.pdf. Accessed on 07 Nov 2021

  • Hijmans RJ, Elith J (2019) Spatial distribution models. https://rspatial.org/sdm/SDM.pdf. Accessed date 10 Jun 2020

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holdsworth DK (1977) Medicinal plants of Papua New Guinea. South Pacific Commission, Noumea, New Caledonia

  • Iannella M, Console G, Cerasoli F, De Simone W, D’Alessandro P, Biondi M (2021) A Step towards SDMs: a “Couple-and-Weigh” framework based on accessible data for biodiversity conservation and landscape planning. Divers Distrib 27:2412–2427

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • IPNI (2021) International plant names index. Published on the Internet http://www.ipni.org, The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens. Retrieved 12 Dec 2021

  • James PB, Bah AJ, Tommy MS, Wardle J, Steel A (2018a) Herbal medicines use during pregnancy in Sierra Leone: an exploratory cross-sectional study. Women Birth 31:302–309

    Article  Google Scholar 

  • James PB, Taidy-Leigh L, Bah AJ, Kanu JS, Kangbai JB, Sevalie S (2018b) Prevalence and correlates of herbal medicine use among women seeking care for infertility in Freetown Sierra Leone. Evid Based Complement Altern 2018:9493807

    Google Scholar 

  • James PB, Wardle J, Steel A, Adams J (2019) Pattern of health care utilization and traditional and complementary medicine use among Ebola survivors in Sierra Leone. PLoS ONE 14:e0223068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Játem-Lásser A, Ricardi M, Adamo G (1998) Herbal traditional medicine of Venezuelan Andes: an ethnopharmacological study. Phytotherapy Res 12:553–559

    Article  Google Scholar 

  • Kanwal H, Sherazi BA (2017) Herbal medicine: trend of practice, perspective, and limitations in Pakistan. Asian Pac J Health Sci 4:6–8

    Article  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  PubMed  Google Scholar 

  • Kumar SJU, Navdeep G, Newmaster SG, Krishna V, Ragupathy S, Seethapathy GS, Ravikanth G, Dorai K, Ramanan US (2016) DNA barcoding and NMR spectroscopy-based assessment of species adulteration in the raw herbal trade of Saraca asoca (Roxb.) Willd, an important medicinal plant. Int J Legal Med 130:1457–1470

    Article  Google Scholar 

  • Kyalo R, Abdel-Rahman EM, Mohamed S, Ekesi S, Christian B, Landmann T (2018) Importance of remotely-sensed vegetation variables for predicting the spatial distribution of African Citrus Triozid (Trioza Erytreae) in Kenya. ISPRS Int J Geo-Inf 7:429. https://doi.org/10.3390/ijgi7110429

    Article  Google Scholar 

  • Lemke D, Brown JA (2012) Habitat modeling of alien plant species at varying levels of occupancy. Forests 3:799–817

    Article  CAS  Google Scholar 

  • Lin CY, Tung CP (2017) Procedure for selecting GCM datasets for climate risk assessment. Terr Atmos Ocean Sci 28:34–55

    Article  Google Scholar 

  • Lippi CA, Gaff HD, St WAL, John HK, Richards AL, Ryan SJ (2021) Exploring the niche of Rickettsia montanensis (Rickettsiales: Rickettsiaceae) infection of the American dog tick (Acari: Ixodidae), using multiple species distribution model approaches. J Med Entomol 58:1083–1092

    Article  PubMed  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  ADS  Google Scholar 

  • Liu Z, Wimberly MC, Dwomoh FK (2016a) Vegetation dynamics in the Upper Guinean Forest region of West Africa from 2001 to 2015. Remote Sens 9:1–5

    Article  ADS  Google Scholar 

  • Liu FJ, Huang C, Pang Y, Li M, Song DX, Song XP, Channan S, Sexton JO, Jiang D, Zhang P, Guo Y (2016b) Assessment of the three factors affecting Myanmar’s forest cover change using Landsat and MODIS vegetation continuous fields data. Int J Digit Earth 9:562–585

    Article  Google Scholar 

  • Liu C, Wolter C, Xian W, Jeschke JM (2020) Most invasive species largely conserve their climatic niche. Proc Natl Acad Sci USA 117:23643–23651

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lopez A, Hudson JB, Towers GHN (2001) Antiviral and antimicrobial activities of Colombian medicinal plants. J Ethnopharmacol 77:189–196

    Article  CAS  PubMed  Google Scholar 

  • López-Tirado J, Vessella F, Stephan J, Ayan S, Schirone B, Hidalgo PJ (2020) Effect of climate change on potential distribution of Cedrus libani A. Rich in the twenty-first century: an ecological niche modelling assessment. New For 52:363–376

    Article  Google Scholar 

  • Mackenzie DI, Royle JA (2005) Designing occupancy studies: general advice and allocating survey effort. J Appl Ecol 42:1105–1114

    Article  Google Scholar 

  • Mageswaran T, Sachithanandam V, Sridhar R, Mahapatra M, Purvaja R, Ramesh R (2021) Impact of sea level rise and shoreline changes in the tropical island ecosystem of Andaman and Nicobar region, India. Nat Hazards 109:1717–1741

    Article  Google Scholar 

  • Mahesekar N (2022) Ayurveda—a promising stakeholder in the world market. AYUHOM 9:53

    Google Scholar 

  • Maia ACP, Ferreira EDC, De Lucena CM, Souza ADS, Da Cruz DD, De Lucena RFP (2021) Comparing ethnobotanical knowledge of medicinal plants between community health workers and local experts in the Mata da Paraíba zone, northeastern Brazil. Biodiversitas 22:5606–5616

    Google Scholar 

  • Mánez KS, Husain S, Ferse S, Costa MM (2012) Water scarcity in the Spermonde Archipelago, Sulawesi, Indonesia: past, present and future. Environ Sci Policy 23:74–84

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Mathew S, Mathew G, Joy PP, Skaria P, Joseph TS (2005) Differentiation of Saraca asoca crude drug from its adulterant. Ancient Sci Life 24:174–178

    Google Scholar 

  • Mudereri B, Abdel-Rahman EM, Dube T, Landmann T, Khan Z, Kimathi E, Owino R, Niassy S (2020) Multi-source spatial data-based invasion risk modeling of Striga (Striga asiatica) in Zimbabwe. GIS Remote Sens 57:553–571

    Article  Google Scholar 

  • Naimi B, Araujo MB (2016) sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39:368–375

    Article  ADS  Google Scholar 

  • Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191–203

    Article  ADS  Google Scholar 

  • Nair RR, Karumathil S, Udayan PS, Prakashkumar RP, Sérsic AN (2019) Evolutionary history of Kingiodendron pinnatum (Fabaceae: Caesalpinoideae), an endangered species of the Western Ghats, India: a phylogeographical approach. Biol J Linn Soc 126:688–705

    Article  Google Scholar 

  • Näsström R, Mattsson E (2011) Country report Sri Lanka: land-use change and forestry at the national and sub-national level. Focali report; University of Gothenburg, Gothenburg, Sweden

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • Olivera L, Minghetti E, Montemayor S (2020) Ecological niche modeling (ENM) of Leptoglossus clypealis a new potential global invader: following in the footsteps of Leptoglossus occidentalis? Bull Entomol Res 111:289–300

    Article  PubMed  Google Scholar 

  • Otieno FT, Gachohi J, Gikuma-Njuru P, Kariuki P, Oyas H, Canfield SA, Blackburn JK, Njenga K, Bett B (2021) Modeling the spatial distribution of anthrax in southern Kenya. PLoS Negl Trop Dis 15:e0009301

    Article  PubMed  PubMed Central  Google Scholar 

  • Palhares RM, Baratto LC, Scopel M, Mügge F, Brandão MG (2021) Medicinal plants and herbal products from Brazil: how can we improve quality? Front Pharmacol 11:606623. https://doi.org/10.3389/fphar.2020.606623

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascal J, Ramesh B, Franceschi DD (2004) Wet evergreen forest types of the southern Western Ghats, India. Trop Ecol 45:281–292

    Google Scholar 

  • Pradhan P, Joseph L, Gupta V, Chulet R, Arya H, Verma R, Bajpai A (2009) Saraca asoca (Ashoka): a review. J Chem Pharm Res 1:62–71

    Google Scholar 

  • Prajith TM, Anilkumar C (2017) Seed desiccation responses in Saraca asoca (Roxb.) W. J De Wilde. Curr Sci 112:2462–2466

    Article  Google Scholar 

  • Quiroz D, Towns A, Legba SI, Swier J, Brière S, Sosef M, van Andel T (2014) Quantifying the domestic market in herbal medicine in Benin, West Africa. J Ethnopharmacol 151:1100–1108

    Article  PubMed  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ranasinghe S, Ansumana R, Lamin JM, Bockarie AS, Bangura U, Buanie JA, Stenger DA, Jacobsen KH (2015) Herbs and herbal combinations used to treat suspected malaria in Bo, Sierra Leone. J Ethnopharmacol 166:200–204

    Article  PubMed  Google Scholar 

  • Rathod CP, Ghante MH (2021) Pharmacological importance of Saraca asoca: a review. J Pharmacogn Phytochem 13:131–135

    Google Scholar 

  • Ravikumar K, Ved DK, Sankar RV, Udayan PS (2000) 100 red listed medicinal plants of conservation concern in Southern India. Foundation for Revitalisation of Local Health Traditions, Bangalore

    Google Scholar 

  • Reside AE, Watson I, VanDerWal J, Kutt AS (2011) Incorporating low-resolution historic species location data decreases performance of distribution models. Ecol Model 222:3444–3448

    Article  Google Scholar 

  • Rew J, Cho Y, Moon J, Hwang E (2020) Habitat suitability estimation using a two-stage ensemble approach. Remote Sens 12(9):1475. https://doi.org/10.3390/rs12091475

    Article  Google Scholar 

  • Rodrigues RAF, Figueira GM, Sartoratto A, Yamane LT, de Freitas-Blanco VS (2018) Chemical diversity and ethnopharmacological survey of South American medicinal and aromatic plant species. In: Albuquerque U, Patil U, Máthé Á (eds) Medicinal and aromatic plants of South America Medicinal and aromatic plants of the world. Springer, Dordrecht, p 5

    Google Scholar 

  • Rojas JJ, Ochoa VJ, Ocampo SA, Muñoz JF (2006) Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections. BMC Complement Altern 6(1):1–6

    Google Scholar 

  • Rout S, Khare N, Beura S (2018) Vegetative propagation of Ashoka (Saraca asoca Roxb. De Wilde.) by stem cuttings. Pharma Innovation 7:486–488

    CAS  Google Scholar 

  • Roy PS, Padalia H, Chauhan N, Porwal MC, Gupta S, Biswas S, Jagdale R (2005) Validation of geospatial model for biodiversity characterisation at landscape level—a study in Andaman and Nicobar Islands, India. Ecol Modell 185:349–369

    Article  Google Scholar 

  • Saini A, Hegde S, Hegde HV, Kholkute SD, Roy S (2018) Assessment of genetic diversity of Saraca asoca (Roxb.) De Wilde: a commercially important, but endangered, forest tree species in Western Ghats India. New Zea J For Sci 48:17–28

    Article  Google Scholar 

  • Sánchez-Cuervo AM, Aide TM, Clark ML, Etter A (2012) Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS ONE 7(8):e43943

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Sangoony H, Vahabi M, Tarkesh M, Soltani S (2016) Range shift of Bromus tomentellus Boiss. as a reaction to climate change in Central Zagros Iran. Appl Ecol Environ Res 14:85–100

    Article  Google Scholar 

  • Sasmal S, Majumdar S, Gupta M, Mukherjee A, Mukherjee PK (2012) Pharmacognostical, phytochemical and pharmacological evaluation for the antipyretic effect of the seeds of Saraca asoca Roxb. Asian Pac J Trop Biomed 2:782–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evol 6:5973–5986

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma TVRS, Abirami K, Chander MP (2018) Medicinal plants used by tribes of Andaman and Nicobar Islands: a conservation appraisal. Indian J Plant Genet Resour 31:125–133

    Article  Google Scholar 

  • Shirolkar A, Gahlaut A, Chhillar AK, Dabur R (2013) Quantitative analysis of catechins in Saraca asoca and correlation with antimicrobial activity. J Pharm Anal 3:421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Krishna THA, Kamalraj S, Kuriakose GC, Valayil JM, Jayabaskaran C (2015) Phytomedicinal importance of Saraca asoca (Ashoka): an exciting past, an emerging present and a promising future. Curr Sci 109:1790–1801

    Article  CAS  Google Scholar 

  • Smitha GR, Das M (2016) Effect of seed moisture content, temperature and storage period on seed germination of Saraca asoca—an endangered medicinal plant. Med Plants 8:60–64

    Google Scholar 

  • Smitha GR, Thondaiman V (2016) Reproductive biology and breeding system of Saraca asoca (Roxb) De Wilde: a vulnerable medicinal plant. Springerplus 5:205. https://doi.org/10.1186/s40064-016-3709-9

    Article  Google Scholar 

  • Soberón JM, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv Inform 2:1–10

    Article  Google Scholar 

  • Somarriba E, Beer J, Alegre-Orihuela J, Andrade HJ, Cerda R, DeClerck F, Detlefsen G, Escalante M, Giraldo LA, Ibrahim M, Krishnamurthy L (2012) Mainstreaming agroforestry in Latin America. Agroforestry-the future of global land use. Springer, Dordrecht, pp 429–453

    Chapter  Google Scholar 

  • Sumangala RC, Rosario S, Charles B, Ganesh D, Ravikanth G (2017) Identifying conservation priority sites for Saraca asoca: an important medicinal plant using ecological niche models. Indian For 143:531–536

    Google Scholar 

  • Sumangala RC, Ganesh D, Rosario S, Vasudeva R, Ramanan US, Ravikanth G (2018) Development of strategies for conservation of S. asoca: an important globally vulnerable tree species in Western Ghats India. In: Proceedings of ARSSS International Conference, Bengaluru, India, pp 21–27

  • Swets KA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  • Torres-Lezama A, Ramírez-Angulo H, Vilanova E, Barros R (2008) Forest resources in Venezuela: current status and prospects for sustainable management. Bois For Trop 295:21–33

    Google Scholar 

  • Tschora H, Cherubini F (2020) Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Glob Ecol Conserv 22:e00919

    Google Scholar 

  • Urumarudappa SKJ, Rosario S, Ravikanth G, Sukrong S (2023) A comprehensive review on Saraca asoca (Fabaceae)-Historical perspective, traditional uses, biological activities, and conservation. J Ethnopharmacol 317:116861

    Article  PubMed  Google Scholar 

  • Urvois T, Auger-Rozenberg MA, Roques A, Rossi JP, Kerdelhue C (2021) Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Sci Rep 11:1–11

    Article  Google Scholar 

  • Valencia-Rodríguez D, Jiménez-Segura L, Rogéliz CA, Parra JL (2021) Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: the case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16:e0247876

    Article  PubMed  PubMed Central  Google Scholar 

  • van Andel TR, Myren B, van Onselen SJ (2012) Ghana’s herbal market. J Ethnopharmacol 140:368–378

    Article  PubMed  Google Scholar 

  • Veettil BK, Van DD, Quang NX, Hoai PN (2020) Spatiotemporal dynamics of mangrove forests in the Andaman and Nicobar Islands (India). Reg Stud Mar Sci 39:101455

    Google Scholar 

  • Vermeij GJ (2005) Invasion as expectation: a historical fact of life. In: Sax DF, Gaines SD, Stachowicz JJ (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer, New York, pp 315–339

    Google Scholar 

  • Wadsworth RA, Lebbie AR (2019) What happened to the forests of Sierra Leone? Land 8:80. https://doi.org/10.3390/land8050080

    Article  Google Scholar 

  • Yadav S, Bhattacharya P, Areendran G, Sahana M, Raj K, Sajjad H (2021) Predicting impact of climate change on geographical distribution of major NTFP species in the Central India Region. Model Earth Syst Environ 8:449–468. https://doi.org/10.1007/s40808-020-01074-4

    Article  Google Scholar 

  • Yang M, Li Z, Liu L, Bo A, Zhang C, Li M (2020) Ecological niche modeling of Astragalus membranaceus var mongholicus medicinal plants in Inner Mongolia China. Sci Rep 10:12482

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yashmita-Ulman SM, Kumar A, Sharma M (2021) Conservation of plant diversity in agroforestry systems in a biodiversity hotspot region of northeast India. Agric Res 10:569–581

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RRN conceptualized the study. RRN, GR and PSU performed data curation and design of methodology. RRN and GR executed the formal analysis. RRN, GR and PSU performed the visualization of the results and validation. RRN, GR and PSU wrote the manuscript.

Corresponding author

Correspondence to Rahul Raveendran Nair.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

42965_2024_329_MOESM1_ESM.tif

Supplementary Fig. 1 Relative variable importance of tested models a) GLM, b) BRT, c) RF, d) FDA, e) Maxent and f) Bioclim (TIF 1172 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, R.R., Ravikanth, G. & Udayan, P.S. Conservation management of Saraca asoca (Roxb.) W. J. de Wilde (Fabaceae) using ecological niche modeling. Trop Ecol (2024). https://doi.org/10.1007/s42965-024-00329-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42965-024-00329-w

Keywords

Navigation