Skip to main content
Log in

Remote sensing-derived bioclimatic variables for modeling invasive Prosopis juliflora distribution in a region of limited meteorological stations

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Accurate modeling of invasive species in areas of limited distribution of meteorological stations is challenging. In this regard, climate records from satellites are good alternatives. However, the accuracy of these datasets needs to be validated and their performance should be evaluated. Hence, this study aimed at evaluating the performance of four satellite-derived bioclimatic variables for modeling invasive Prosopis juliflora distribution in the dryland ecosystem of Ethiopia. Accordingly, WorldClim1.4 bioclimatic variables were used as a baseline to evaluate their performance, while, gauge-derived bioclimatic variables were used to validate all tested datasets. A total of 240 species occurrence and absence points were used to train and test the performance of all models using the Random Forest algorithm. Accordingly, satellite-derived bioclimatic variables provide better performance with an area under the curve of 0.64 and true skill statistics of 0.4 compared to a reanalysis and WorldClim1.4 derived bioclimatic variables. However, the lower performance of satellite datasets indicates the importance of its integration with other variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari D, Tiwary R, Barik SK (2015) Modeling hotspots for invasive alien plants in India. PLoS ONE 10(7):e0134665

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed N, Atzberger C, Zewdie W (2020) Integration of remote sensing and bioclimatic data for prediction of invasive species distribution in data-poor regions : a review on challenges and opportunities. Environ Syst Res 9(32):1–18

    Google Scholar 

  • Ahmed N, Atzberger C, Zewdie W (2021) Species Distribution Modeling performance and its implication for Sentinel-2-based prediction of invasive Prosopis juliflora in lower Awash River basin Ethiopia. Ecol Proc 10(18):1–16

    Google Scholar 

  • Akaffou SVE, Abrou NEJ, Tiébré MS (2020) Current and future distribution of. IOSR J Pharm Biol Sci 15(2):6–14

    Google Scholar 

  • Amiri M, Tarkeshi M, Jafari R, Jetschke G (2020) Bioclimatic variables from precipitation and temperature records vs. remote sensing-based bioclimatic variables: which side can perform better in species distribution modeling? Ecol Inform 57(101060):1–16

    Google Scholar 

  • Beaury EM, Fusco EJ, Jackson MR et al (2020) Incorporating climate change into invasive species management : insights from managers. Biol Invas 22(2):233–252

    Article  Google Scholar 

  • Datta A, Schweiger O, Kühn I (2020) Origin of climatic data can determine the transferability of species distribution models. NeoBiota 59:61–76

    Article  Google Scholar 

  • Deblauwe V, Droissart V, Bose R et al (2016) Remotely sensed temperature and precipitation data improve species distribution modeling in the tropics. Glob Ecol Biogeogr 25(4):443–454

    Article  Google Scholar 

  • Dinku T, Ceccato P, Kopec EG et al (2007) Validation of satellite rainfall products over East Africa’s complex topography. Int J Remote Sens 28(7):1503–1526

    Article  Google Scholar 

  • Engler R, Waser LT, Zimmermann NE et al (2013) Combining ensemble modeling and remote sensing for mapping individual tree species at high spatial resolution. For Ecol Manag 310:64–73

    Article  Google Scholar 

  • Fernandez M, Hamilton H, Kueppers L (2013) Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere 4(5):1–17

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Gervais JA, Kovach R, Sepulveda A et al (2020) Climate-induced expansions of invasive species in the Paci fi c Northwest, North America: a synthesis of observations and projections. Biol Invas 22(7):2163–2183

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 1978:1965–1978

    Article  Google Scholar 

  • Jensen T, Hass FS, Akbar MS et al (2020) Employing machine learning for detection of invasive species using sentinel-2 and aviris data: The case of Kudzu in the United States. Sustainability 12(9):1–16

    Article  Google Scholar 

  • Karger DN, Conrad O, Böhner J et al (2017) Data Descriptor : climatologies at high resolution for the earth’s land surface areas. Nat Publ Group 4(170122):1–20

    Google Scholar 

  • Lembrechts JJ, Lenoir J, Haider S et al (2019) Comparing temperature data sources for use in species distribution models : from in-situ logging to remote sensing. Global Ecol Biogeogr 00:1–19

    Google Scholar 

  • Liu Y, Shi J (2020) Predicting the potential global geographical distribution of two icerya species under climate change. Forests 11(684):1–19

    CAS  Google Scholar 

  • Mbaabu P, Gichaba M, Olago D et al (2019) Spatial evolution of Prosopis invasion and its effects on LULC and livelihoods in Baringo Kenya. Remote Sens 11(10):1217

    Article  Google Scholar 

  • MoLF (2017) Federal democratic republic of ethiopia ministry of livestock and fisheries national strategy on prosopis juliflora management.

  • Naimi B, Araújo MB (2016) Sdm: A reproducible and extensible R platform for species distribution modeling. Ecography 39:001–008

    Article  Google Scholar 

  • Ng WT, de Oliveira C, Silva A, Rima P et al (2018) Ensemble approach for potential habitat mapping of invasive Prosopis spp in Turkana Kenya. Ecol Evolution 8(23):1–11

    Article  Google Scholar 

  • NMA (2021) National meteorological agency. http://www.ethiomet.gov.et/. (Accessed date 1 Feb 2021)

  • R Development Core Team (2020) R A language and environment for statistical computing. R foundation for statistical computing, Vienna, Australia. https://www.r-project.org/index.html

  • Shiferaw H, Schaffner U, Bewket W et al (2019a) Modeling the current fractional cover of an invasive alien plant and drivers of its invasion in a dryland ecosystem. Sci Rep 9(1576):1–12

    CAS  Google Scholar 

  • Shiferaw H, Bewket W, Alamirew T et al (2019b) Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Sci Total Environ 675:354–366

    Article  CAS  PubMed  Google Scholar 

  • Shrestha UB, Shrestha BB (2019) Climate change amplifies plant invasion hotspots in Nepal. Divers Distrib 00:1–14

    Google Scholar 

  • Sintayehu DW, Dalle G, Bobasa AF (2020a) Impacts of climate change on current and future invasion of Prosopis juliflora in Ethiopia: environmental and socio-economic implications. Heliyon 6(8):e04596

    Article  PubMed  PubMed Central  Google Scholar 

  • Sintayehu DW, Egeru A, Tim W, Elias N (2020b) Regional dynamics in distribution of Prosopis juliflora under predicted climate change in Africa. Trop Ecol 61:437–445

    Article  Google Scholar 

  • Tesfaye G, Tadesse T, Gessesse B, Dinku T (2017) Validation of new satellite rainfall products over the Upper Blue Nile. Atmos Meas Tech Discuss 11:1–24

    Google Scholar 

  • Tilahun M, Birner R, Ilukor J (2017) Household-level preferences for mitigation of Prosopis juliflora invasion in the Afar region of Ethiopia: a contingent valuation. J Environ Planning Manage 60(2):282–308

    Article  Google Scholar 

  • Title PO, Bemmels JB (2017) ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. BioRxiv 41(2):291–307

    Google Scholar 

  • Vega GC, Pertierra LR, Olalla-tárraga MÁ (2017) Data Descriptor : MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modeling. Sci Data 4(170078):1–11

    Google Scholar 

  • Wakie TT, Evangelista PH, Jarnevich CS, Laituri M (2014) Mapping current and potential distribution of non-native Prosopis Juliflora in the Afar region of Ethiopia. PLoS ONE 9(11):e112854

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is part of the doctoral study entitled “Role of remote sensing in invasive species distribution modeling, the case of the lower Awash River basin, Ethiopia”. We would like to thank Wollo University and the Ethiopian Space Science and Technology Institute (ESSTI) for allowing this doctoral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurhussen Ahmed.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Atzberger, C. & Zewdie, W. Remote sensing-derived bioclimatic variables for modeling invasive Prosopis juliflora distribution in a region of limited meteorological stations. Trop Ecol 63, 94–103 (2022). https://doi.org/10.1007/s42965-021-00193-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-021-00193-y

Keywords

Navigation