Skip to main content
Log in

A novel non-heuristic search technique for constructing uniform designs with a mixture of two- and four-level factors: a simple industrial applicable approach

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

Uniformly scatter the design points over the experimental domain is one of the most widely used techniques to construct optimal designs (called, uniform designs) for real-world high-dimensional experiments with limited resources and without model pre-specification. Uniform designs are robust to the underlying model assumption and thus experimenters do not need to specify the models of their experiments in advance before conducting them. A uniform design affords a good design space coverage that yields more accurate approximations globally using fewer experimental trials. The construction of uniform designs is a significant challenge due to the computational complexity. The existing techniques are extremely time-consuming (heuristic search techniques), difficult for non-mathematicians experimenters, and optimal results are not guaranteed. This paper tries to help non-mathematicians experimenters by providing a simple non-heuristic search technique for constructing uniform designs for experiments with a mixture of two- and four-level factors. The efficiency of the new technique is investigated theoretically and numerically. A comparison study between the new technique and the existing techniques is given. Furthermore, the applicability of the new technique for real-world applications is discussed and demonstrated by two real industrial experiments. The results show that the new designs that are generated by the new technique are better than the existing recommended designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ankenman, B. E. (1999). Design of experiments with two- and four-level factors. Journal of Quality Technology, 31(4), 363–375.

    Article  Google Scholar 

  • Cheng, C. S., Steinberg, D. M., & Sun, D. X. (1999). Minimum aberration and model robustness for two-level fractional factorial designs. The Journal of the Royal Statistical Society, Series B, 61, 85–93.

    Article  MathSciNet  Google Scholar 

  • Cheng, C. S., Deng, L. Y., & Tang, B. (2002). Generalized minimum aberration and design efficiency for nonregular fractional factorial designs. Statistica Sinica, 12, 991–1000.

    MathSciNet  MATH  Google Scholar 

  • Elsawah, A. M. (2016). Constructing optimal asymmetric combined designs via Lee discrepancy. Statistics and Probability Letters, 118, 24–31.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M. (2019a). Designing uniform computer sequential experiments with mixture levels using Lee discrepancy. Journal of Systems Science and Complexity, 32(2), 681–708.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M. (2019b). Constructing optimal router bit life sequential experimental designs: New results with a case study. Communications in Statistics, Simulation and Computation, 48(3), 723–752.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M., & Fang, K. T. (2019). A catalog of optimal foldover plans for constructing U-uniform minimum aberration four-level combined designs. Journal of Applied Statistics, 46(7), 1288–1322.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M. (2020). Building some bridges among various experimental designs. The Journal of the Korean Statistical Society, 49, 55–81.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M. (2021a). Designing optimal large four-level experiments: A new technique without recourse to optimization softwares. Communications in Mathematics and Statistics. https://doi.org/10.1007/s40304-021-00241-y.

    Article  Google Scholar 

  • Elsawah, A. M. (2021b). Multiple doubling: A simple effective construction technique for optimal two-level experimental designs. Statist Papers, 62(6), 2923–2967.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M. (2021c). An appealing technique for designing optimal large experiments with three-level factors. Journal of Computational and Applied Mathematics, 384, 113164.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M., & Fang, K. T. (2018). New results on quaternary codes and their Gray map images for constructing uniform designs. Metrika, 81(3), 307–336.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M., & Qin, H. (2017a). A new look on optimal foldover plans in terms of uniformity criteria. Communications in Statistics: Theory and Methods, 46(4), 1621–1635.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M., & Qin, H. (2017b). Optimum mechanism for breaking the confounding effects of mixed-level designs. Computational Statistics, 32(2), 781–802.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M., & Qin, H. (2016). An efficient methodology for constructing optimal foldover designs in terms of mixture discrepancy. Journal of the Korean Statistical Society, 45, 77–88.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M., & Qin, H. (2015). A new strategy for optimal foldover two-level designs. Statistics and Probability Letters, 103, 116–126.

    Article  MathSciNet  Google Scholar 

  • Elsawah, A. M., Fang, K. T., He, P., & Qin, H. (2021). Sharp lower bounds of various uniformity criteria for constructing uniform designs. Statistics Papers, 62, 1461–1482.

    Article  MathSciNet  Google Scholar 

  • Fang, K. T. (1980). The uniform designs: Application of number-theoretic methods in experimental design. Acta Mathematicae Applicatae Sinica, 3, 363–372.

    MathSciNet  Google Scholar 

  • Fang, K. T., & Hickernell, F. J. (1995). The uniform design and its applications. Bulletin de l’Institut international de statistique, 1, 333–349.

    Google Scholar 

  • Fang, K. T., Ke, X., & Elsawah, A. M. (2017). Construction of uniform designs via an adjusted threshold accepting algorithm. Journal of Complexity, 43, 28–37.

    Article  MathSciNet  Google Scholar 

  • Fang, K. T., & Li, R. (2006). Uniform design for computer experiments and its optimal properties. International Journal of Materials and Product Technology, 25(1/2/3), 198–210.

  • Fang, K. T., Lin, D. K. J., Winker, P., & Zhang, Y. (2000). Uniform design: Theory and application. Technometrics, 42, 237–248.

    Article  MathSciNet  Google Scholar 

  • Fries, A., & Hunter, W. G. (1980). Minimum Aberration \(2^{k-p}\) Designs. Technometrics, 22, 601–608.

    MathSciNet  MATH  Google Scholar 

  • Hickernell, F. J. (1998a). A generalized discrepancy and quadrature error bound. Mathematics of Computation, 67, 299–322.

    Article  MathSciNet  Google Scholar 

  • Hickernell, F.J. (1998b). Lattice rules: how well do they measure up? In: Hellekalek, P., Larcher, G. (Eds.), Random and Quasi-Random Point Sets. In Lecture Notes in Statistics, vol. 138. Springer, New York, (pp. 109–166). (pp. 109–166).

  • Johnson, M. E., Moore, L. M., & Ylvisaker, D. (1990). Minimax and maximin distance design. Journal of Statistical Planning and Inference, 26, 131–148.

    Article  MathSciNet  Google Scholar 

  • Ma, C. X., & Fang, K. T. (2001). A note on generalized aberration in factorial designs. Metrika, 53, 85–93.

    Article  MathSciNet  Google Scholar 

  • Montgomery, D. C. (1997). Design and Analysis of Experiments (4th ed.). New York, NY: John Wiley.

    MATH  Google Scholar 

  • Mukerjee, R., & Wu, C. F. J. (1995). On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Annals of Statistics, 23(6), 2102–15.

    Article  MathSciNet  Google Scholar 

  • Phadke, M. S. (1986). Design optimization case studies. AT& T Technical Journal, 65, 51–68.

    Article  Google Scholar 

  • Simpson, T. W., Lin, D. K. J., & Chen, W. (2001). Sampling strategies for computer experiments: Design and analysis. International Journal of Reliability and Applications, 2(3), 209–240.

    Google Scholar 

  • Taguchi, G. (1987). System Of Experimental Design (Vol. 1). White Plains, NY: Unipub/Kraus International Publications.

    MATH  Google Scholar 

  • Tang, B., & Deng, L. Y. (1999). Minimum G2-aberration for non-regular fractional factorial designs. Annals of Statistics, 27, 1914–1926.

    MathSciNet  MATH  Google Scholar 

  • Wang, Y., & Fang, K. T. (1981). A not on uniform distribution and experimental design. Chinese Science Bulletin, 26(764), 485–489.

    MathSciNet  MATH  Google Scholar 

  • Weng, L. C., Elsawah, A. M., & Fang, K. T. (2021). Cross-entropy loss for recommending efficient fold-over technique. Journal of Systems Science and Complexity, 34, 402–439.

    Article  MathSciNet  Google Scholar 

  • Winker, P., & Fang, K. T. (1997). Optimal U-type designs. In H. Niederreiter, P. Hellekalek, G. Larcher, & P. Zinterhof (Eds.), Monte Carlo and Quasi-Monte Carlo Methods (pp. 436–488). New York: Springer.

    Google Scholar 

  • Xu, H., & Wu, C. F. J. (2001). Generalized minimum aberration for asymmetrical fractional factorial designs. Annals of Statistics, 29, 549–560.

    MathSciNet  MATH  Google Scholar 

  • Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica, 13, 691–708.

    MathSciNet  MATH  Google Scholar 

  • Yang, F., Zhou, Y. D., & Zhang, X. R. (2017). Augmented uniform designs. Journal of Statistical Planning and Inference, 182, 61–73.

    Article  MathSciNet  Google Scholar 

  • Yang, F., Zhou, Y. D., & Zhang, A. J. (2019). Mixed-level column augmented uniform designs. Journal of Complexity, 53, 23–39.

    Article  MathSciNet  Google Scholar 

  • Zhou, Y. D., Ning, J. H., & Song, X. B. (2008). Lee discrepancy and its applications in experimental designs. Statistics and Probability Letters, 78, 1933–1942.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thank the two referees, Associate Editor and the Editor in Chief Professor Hee-Seok Oh for constructive comments that lead to significant improvements of this paper. The author also would like to thank Prof. Kai-Tai Fang for his kind support during this work. This work was partially supported by the UIC Grants (Nos. R201810, R201912 and R202010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Elsawah.

Appendix

Appendix

Proof of Theorem 1

For any design \(\Gamma =(\gamma _{ik})_{i=1,k=1}^{a,b}\), define the following distances among its runs \(D^{\ne 0}_{ij}(\Gamma )=\sharp \{k:|\gamma _{ik}-\gamma _{jk}|\ne 0\}\) and \(D^{=2}_{ij}(\Gamma )=\sharp \{k:|\gamma _{ik}-\gamma _{jk}|=2\}\), and let \(i^{\star } =i-2^{t-1}n,\) \(j^{\star } =j-2^{t-1}n\) and \(C_a^b= \{a,a+1,\ldots ,b\}.\) From the construction procedures in Sect. 3 (cf. Step 4) with some algebra, we get the following relationships between the extended designs and their images

$$\begin{aligned}&D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_1\right) = \left\{ \begin{array}{ll} 2D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_1)\right) ,\,i,j\in C_1^{2^{t-1}n}; \\ 2D^{\ne 0}_{i^{\star }j^{\star }}\left( E^{(t-1)}(\mathbf{X}_1)\right) ,\,i,j\in C_{2^{t-1}n+1}^{2^{t}n}; \\ 2^{t-1}s_1,\,ow. \\ \end{array} \right. \end{aligned}$$
(6)
$$\begin{aligned}&D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_2\right) = \left\{ \begin{array}{ll} D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) ,\,i,j\in C_1^{2^{t-1}n}; \\ D^{\ne 0}_{i^{\star }j^{\star }}\left( E^{(t-1)}(\mathbf{X}_2)\right) ,\,i,j\in C_{2^{t-1}n+1}^{2^{t}n}; \\ 2^{t-1}s_2,\,ow. \\ \end{array} \right. \end{aligned}$$
(7)
$$\begin{aligned}&D^{=2}_{ij}\left( \mathbf{Z}^{(t)}_2\right) =\left\{ \begin{array}{ll} D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) ,\,i,j\in C_1^{2^{t-1}n}; \\ D^{\ne 0}_{i^{\star }j^{\star }}\left( E^{(t-1)}(\mathbf{X}_2)\right) ,\,i,j\in C_{2^{t-1}n+1}^{2^{t}n}; \\ 0,\,ow.\\ \end{array} \right. \end{aligned}$$
(8)

For any t-image design \(\mathbf{Z}^{(t)}=\left(\mathbf{Z}^{(t)}_1\,~\,\mathbf{Z}^{(t)}_2\right)=\left(z^{(t)}_{ik}\right)_{i=1,k=1}^{2^tn,2^{t}s_1+2^{t-1}s_2}\in U\left(2^tn,2^{2^{t}s_1}4^{2^{t-1}s_2}\right)\) with \(2^tn\) runs and a mixture of \(2^{t}s_1\) factors with two levels \(z^{(t)}_{ik_1}\in \{-1,1\},\,1\le i\le 2^tn,\,1\le k_1\le 2^{t}s_1\) and \(2^{t-1}s_2\) factors with four levels \(z^{(t)}_{ik_2}\in \{1,2,3,4\},\,1\le i\le 2^tn,\,2^{t}s_1+1\le k_2\le 2^{t-1}s_2,\) let \(z^{(t)}_{ijk_1}=z^{(t)}_{ik_1}- z^{(t)}_{jk_1}\) and \(z^{(t)}_{ijk_2}=z^{(t)}_{ik_2}- z^{(t)}_{jk_2}.\) Then, the analytical expressions of the discrepancies WD and LD in (4) and (5) can be rewritten in the following formulas, respectively

$$\begin{aligned} \left[ WD\left( \mathbf{Z}^{(t)}\right) \right] ^2&=\frac{1}{2^{2t}n^{2}}\left( \frac{1}{4}\right) ^{2^ts_1+2^ts_2} \sum _{i=1}^{2^tn}\sum _{j=1}^{2^tn} \prod _{k_1=1}^{2^ts_1}\left( 6-{|z^{(t)}_{ijk_1}|}+\frac{1}{4}{|z^{(t)}_{ijk_1}|^2}\right) \nonumber \\&{}\quad \times \prod _{k_2=2^ts_1+1}^{2^ts_1+2^{t-1}s_2}\left( 24-4{|z^{(t)}_{ijk_2}|}+{|z^{(t)}_{ijk_2}|^2}\right) -\left( \frac{4}{3}\right) ^{2^ts_1+2^{t-1}s_2} \end{aligned}$$
(9)

and

$$\begin{aligned} \left[ LD\left( \mathbf{Z}^{(t)}\right) \right] ^2&=\frac{1}{2^{2t}n^{2}}\left( \frac{1}{2}\right) ^{2^ts_1+2^ts_2} \sum _{i=1}^{2^tn}\sum _{j=1}^{2^tn} \prod _{k_1=1}^{2^ts_1}\left( 2-\min \left\{ \frac{1}{2}{|z^{(t)}_{ijk_1}|},2-\frac{1}{2}{|z^{(t)}_{ijk_1}|}\right\} \right) \nonumber \\&{}\quad \times \prod _{k_2=2^ts_1+1}^{2^ts_1+2^{t-1}s_2}\left( 4-\min \left\{ {|z^{(t)}_{ijk_2}|},4-{|z^{(t)}_{ijk_2}|}\right\} \right) -\left( \frac{3}{4}\right) ^{2^ts_1+2^{t-1}s_2}.\end{aligned}$$
(10)

For any factor with four levels \(z^{(t)}_{ik_2}\in \{1,2,3,4\}\) with some algebra, we get

$$\begin{aligned}&4-\min \left\{ {|z^{(t)}_{ijk_2}|},4-{|z^{(t)}_{ijk_2}|}\right\} =\left\{ \begin{array}{ll} 4,\,\,|z^{(t)}_{ijk_2}|=0,\\ 3,\,\,|z^{(t)}_{ijk_2}|=1,\\ 2,\,\,|z^{(t)}_{ijk_2}|=2,\\ 3,\,\,|z^{(t)}_{ijk_2}|=3.\\ \end{array} \right. \end{aligned}$$
(11)
$$\begin{aligned}&24-4{|z^{(t)}_{ijk_2}|}+{|z^{(t)}_{ijk_2}|^2}=\left\{ \begin{array}{ll} 24,\,\,|z^{(t)}_{ijk_2}|=0,\\ 21,\,\,|z^{(t)}_{ijk_2}|=1,\\ 20,\,\,|z^{(t)}_{ijk_2}|=2,\\ 21,\,\,|z^{(t)}_{ijk_2}|=3.\\ \end{array} \right. \end{aligned}$$
(12)

For any factor with two levels \(z^{(t)}_{ik_1}\in \{-1,1\}\) with some algebra, we get

$$\begin{aligned}&2-\min \left\{ \frac{1}{2}{|z^{(t)}_{ijk_1}|},2-\frac{1}{2}{|z^{(t)}_{ijk_1}|}\right\} =\left\{ \begin{array}{ll} 2,\,\,|z^{(t)}_{ijk_1}|=0,\\ 1,\,\,|z^{(t)}_{ijk_2}|=2.\\ \end{array} \right. \end{aligned}$$
(13)
$$\begin{aligned}&6-{|z^{(t)}_{ijk_1}|}+\frac{1}{4}{|z^{(t)}_{ijk_1}|^2}=\left\{ \begin{array}{ll} 6,\,\,|z^{(t)}_{ijk_1}|=0,\\ 5,\,\,|z^{(t)}_{ijk_2}|=2.\\ \end{array} \right. \end{aligned}$$
(14)

From (11)–(14), the formulas (9) and (10) of the discrepancies WD and LD can be rewritten in the following efficient analytical expressions, respectively

$$\begin{aligned} \left[ {WD}\left( \mathbf{Z}^{(t)}\right) \right] ^2= & {} \frac{1}{4^{t}n^{2}}\left( \frac{3}{2}\right) ^{2^{t}s_1+2^{t-1}s_2}\sum _{i,j\in C_1^{2^{t}n}} \left( \frac{5}{6}\right) ^{D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_1\right) } \left( \frac{7}{8}\right) ^{D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_2\right) } \left( \frac{20}{21}\right) ^{D^{=2}_{ij}\left( \mathbf{Z}^{(t)}_2\right) } \nonumber \\&-\left( \frac{4}{3}\right) ^{2^{t}s_1+2^{t-1}s_2} \end{aligned}$$
(15)

and

$$\begin{aligned} \left[ {LD}\left( \mathbf{Z}^{(t)}\right) \right] ^2= & {} \frac{1}{4^{t}n^{2}}\sum _{i,j\in C_1^{2^{t}n}} \left( \frac{3}{4}\right) ^{D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_2\right) } \left( \frac{1}{2}\right) ^{D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_1\right) } \left( \frac{2}{3}\right) ^{D^{=2}_{ij}\left( \mathbf{Z}^{(t)}_2\right) }\nonumber \\&-\left( \frac{3}{4}\right) ^{2^{t}s_1+2^{t-1}s_2}. \end{aligned}$$
(16)

From (6)–(8), the sum term in (15) can be written as follows

$$\begin{aligned}&\sum _{i,j\in C_1^{2^{t}n}} \left( \frac{5}{6}\right) ^{D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_1\right) } \left( \frac{7}{8}\right) ^{D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_2\right) } \left( \frac{20}{21}\right) ^{D^{=2}_{ij}\left( \mathbf{Z}^{(t)}_2\right) } \nonumber \\&{}\quad =\sum _{i,j\in C_1^{2^{t-1}n}}\left( \frac{5}{6}\right) ^{2D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_1)\right) } \left( \frac{7}{8}\right) ^{D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) } \left( \frac{20}{21}\right) ^{D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) } \nonumber \\&\qquad +\sum _{i\in C_{2^{t-1}n+1}^{2^tn}}\sum _{j\in C_1^{2^{t-1}n}}\left( \frac{5}{6}\right) ^{2^{t-1}s_1} \left( \frac{7}{8}\right) ^{2^{t-1}s_2} +\sum _{i\in C_1^{2^{t-1}n}} \sum _{j\in C_{2^{t-1}n+1}^{2^tn}} \left( \frac{5}{6}\right) ^{2^{t-1}s_1} \left( \frac{7}{8}\right) ^{2^{t-1}s_2} \nonumber \\&\qquad +\sum _{i,j\in C_{2^{t-1}n+1}^{2^{t}n}}\left( \frac{5}{6}\right) ^{2D^{\ne 0}_{i^{\star }j^{\star }}\left( E^{(t-1)}(\mathbf{X}_1)\right) } \left( \frac{7}{8}\right) ^{D^{\ne 0}_{i^{\star }j^{\star }}\left( E^{(t-1)}(\mathbf{X}_2)\right) } \left( \frac{20}{21}\right) ^{D^{\ne 0}_{i^{\star }j^{\star }}\left( E^{(t-1)}(\mathbf{X}_2)\right) } \nonumber \\&{}\quad = 2\left( \sum _{i,j\in C_1^{2^{t-1}n}}\left( \frac{5}{6}\right) ^{D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) +2D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_1)\right) } +4^{t-1}n^2\left( \frac{5}{6}\right) ^{2^{t-1}s_1} \left( \frac{7}{8}\right) ^{2^{t-1}s_2}\right) . \end{aligned}$$
(17)

By the same technique, the sum term in (16) can be written as follows

$$\begin{aligned}&\sum _{i,j\in C_1^{2^{t}n}} \left( \frac{1}{2}\right) ^{D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_1\right) } \left( \frac{3}{4}\right) ^{D^{\ne 0}_{ij}\left( \mathbf{Z}^{(t)}_2\right) } \left( \frac{2}{3}\right) ^{D^{=2}_{ij}\left( \mathbf{Z}^{(t)}_2\right) } \nonumber \\&{}\quad = 2\left( \sum _{i,j\in C_1^{2^{t-1}n}}\left( \frac{1}{2}\right) ^{D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) +2D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_1)\right) } +4^{t-1}n^2\left( \frac{1}{2}\right) ^{2^{t-1}s_1} \left( \frac{3}{4}\right) ^{2^{t-1}s_2}\right) . \end{aligned}$$
(18)

From Theorem 1 in Elsawah (2021b) with some algebra, we get the following relationship between the dissimilarity among the runs of any sub-design \(\mathbf{X}_\sigma \in U(n,2^{s_\sigma }),\,\sigma =1,2\) and its corresponding extended design \(E^{(t-1)}(\mathbf{X}_\sigma )\in U\left(2^{t-1}n,2^{2^{t-1}s_\sigma }\right)\)

$$\begin{aligned} D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_\sigma )\right) = \left\{ \begin{array}{ll} 2^{t-1}D^{\ne 0}_{(i-kn)(j-kn)}(\mathbf{X}_\sigma ),\,i,j\in C_{kn+1}^{kn+n},\,k\in C_ 0^{2^{t-1}-1}; \\ 2^{t-2}s_\sigma , \,ow. \\ \end{array} \right. \end{aligned}$$
(19)

From (19), the sum in (17) can be rewritten as follows

$$\begin{aligned}&\sum _{i,j\in C_1^{2^{t-1}n}}\left( \frac{5}{6}\right) ^{D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) +2D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_1)\right) } \nonumber \\&{}\quad =\sum _{k\in C_0^{2^{t-1}-1}}\sum _{i,j\in C_{kn+1}^{(k+1)n}}\left( \frac{5}{6}\right) ^{2^{t-1}\left( 2D^{\ne 0}_{(i-kn)(j-kn)}(\mathbf{X}_1)+D^{\ne 0}_{(i-kn)(j-kn)}(\mathbf{X}_2)\right) } \nonumber \\&\qquad +\sum _{k,\ell (\ne \ell )\in C_0^{2^{t-1}-1}} \sum _{i\in C_{kn+1}^{(k+1)n}}\sum _{j\in C_{\ell n+1}^{(\ell +1)n}}\left( \frac{5}{6}\right) ^{2^{t-2}(2s_1+s_2)} \nonumber \\&{}\quad =2^{t-1}\sum _{i,j\in C_1^{n}}\left( \frac{5}{6}\right) ^{2^{t-1}\left( 2D^{\ne 0}_{ij}(\mathbf{X}_1)+D^{\ne 0}_{ij}(\mathbf{X}_2)\right) }+2^{t-1}(2^{t-1}-1)n^2\left( \frac{5}{6}\right) ^{2^{t-2}(2s_1+s_2)}. \end{aligned}$$
(20)

By the same technique, the sum term in (18) can be written as

$$\begin{aligned}&\sum _{i,j\in C_1^{2^{t-1}n}}\left( \frac{1}{2}\right) ^{D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) +2D^{\ne 0}_{ij}\left( E^{(t-1)}(\mathbf{X}_1)\right) } \nonumber \\&{}\quad =2^{t-1}\sum _{i,j\in C_1^{n}}\left( \frac{1}{2}\right) ^{2^{t-1}\left( D^{\ne 0}_{ij}(\mathbf{X}_2)+2D^{\ne 0}_{ij}(\mathbf{X}_1)\right) }+2^{t-1}(2^{t-1}-1)n^2\left( \frac{1}{2}\right) ^{2^{t-2}(s_2+2s_1)}. \end{aligned}$$
(21)

Combining (15)–(18) and (20)–(21) with some algebra, the proof can be completed. \(\square\)

Proof of Corollary 1

The proof is obvious from Theorem 1, where

$$\begin{aligned} \prod _{r=1}^{2} \Omega ^{2^{t-r+1}h_{ij}(\mathbf{X}_r)}=\Omega ^{2^{t-1}(h_{ij}(\mathbf{X})+h_{ij}(\mathbf{X}_1))}=\Omega ^{2^{t-1}h_{ij}(\mathbf{X}^{\star })}. \end{aligned}$$
(22)

\(\square\)

Proof of Corollary 2

Since the base design \(\mathbf{X}\) is a saturated orthogonal design \(\mathbf{X}\in SOD(n,2^{s}),\) then \(h_{ij}(\mathbf{X})=\frac{n}{2}\) for any \(i\ne j\) (cf. Mukerjee and Wu 1995). From Theorem 1 and (22), the proof can be completed. \(\square\)

Proof of Corollary 3

The proof is obvious from the proof of Corollary 2. \(\square\)

Proof of Theorem 2

From the definition of \(H_{\mu _1,\mu _2}(\mathbf{X}),\) we get

$$\begin{aligned} \sum _{i=1}^{n}\sum _{j=1}^{n}\left( \prod _{r=1}^{2} \Omega ^{2^{t-r+1}h_{ij}(\mathbf{X}_r)}\right)= & {} \sum _{\mu _1=0}^{s_1}\sum _{\mu _2=0}^{s_2} \Omega ^{2^{t}\mu _1}\Omega ^{2^{t-1}\mu _2}\sharp \{(i,j):h_{ij}(\mathbf{X}_{1})=\mu _1,h_{ij}(\mathbf{X}_{2})=\mu _2\} \nonumber \\ {}= & {} n \sum _{\mu _1=0}^{s_1}\sum _{\mu _2=0}^{s_2} \Omega ^{2^{t}\mu _1}\Omega ^{2^{t-1}\mu _2} H_{\mu _1,\mu _2}(\mathbf{X}). \end{aligned}$$
(23)

From Theorem 1 and (23), the proof can be completed. \(\square\)

Proof of Corollary 4

The proof can be obtained from Corollary 1 by the same technique of (23). \(\square\)

Proof of Corollary 5

For any design without replicates \(\mathbf{X}_1\in U(n,2^{s_1}),\) we get \(h_{ij}(\mathbf{X}_1)=0\) for only \(i=j\) and thus we get

$$\begin{aligned} \sum _{j\ne i=1}^{n} \Omega ^{2^{t-1}h_{ij}(\mathbf{X}_1)}= & {} \sum _{\mu =1}^{s_1}\Omega ^{2^{t-1}\mu }\sharp \{(i,j):h_{ij}(\mathbf{X}_{1})=\mu \} =n \sum _{\mu =1}^{s_1}\Omega ^{2^{t-1}\mu } H_{\mu }(\mathbf{X}_1). \end{aligned}$$
(24)

The proof can be completed from Corollary 2 and (24). \(\square\)

Proof of Corollary 6

The proof is obvious from Corollary 3 by the same way of (24). \(\square\)

Proof of Theorem 3

By the same technique of Theorem 2 in Elsawah (2020) with some algebra, the inverse of the MacWilliam transformations is given as follows

$$\begin{aligned} H_{\mu _1,\mu _2}(\mathbf{X})= & {} \frac{n}{2^{s}}\sum _{\delta _1=0}^{s_1}\sum _{\delta _2=0}^{s_2}\left( \prod _{r=1}^2P_{\mu _r}(\delta _r,2^{s_r})\right) W_{\delta _1,\delta _2}(\mathbf{X}). \end{aligned}$$
(25)

From (25), we get

$$\begin{aligned}&\sum _{\mu _1=0}^{s_1}\sum _{\mu _2=0}^{s_2}\left( \prod _{r=1}^{2}\Omega ^{2^{t-r+1}\mu _r}\right) H_{\mu _1,\mu _2}(\mathbf{X})\nonumber \\&{}\quad = \frac{n}{2^{s}}\sum _{\mu _1=0}^{s_1}\sum _{\mu _2=0}^{s_2}\left( \prod _{r=1}^{2}\Omega ^{2^{t-r+1}\mu _r}\right) \sum _{\delta _1=0}^{s_1}\sum _{\delta _2=0}^{s_2}\left( \prod _{r=1}^2P_{\mu _r}(\delta _r,2^{s_r})\right) W_{\delta _1,\delta _2}(\mathbf{X}) \nonumber \\&{}\quad =\frac{n}{2^{s}} \sum _{\delta _1=0}^{s_1}\sum _{\delta _2=0}^{s_2} W_{\delta _1,\delta _2}(\mathbf{X}) \prod _{r=1}^{2}\left( \sum _{\mu _r=0}^{s_r}\Omega ^{2^{t-r+1}\mu _r}P_{\mu _r}(\delta _r,2^{s_r})\right) . \end{aligned}$$
(26)

From the orthogonality property of the Krawtchouk polynomials, we get

$$\begin{aligned} \sum _{\mu _r=0}^{s_r}\Omega ^{2^{t-r+1}\mu _r}P_{\mu _r}(\delta _r,2^{s_r}) =\left( 1+\Omega ^{2^{t-r+1}}\right) ^{s_r}\left( \frac{1-\Omega ^{2^{t-r+1}}}{1+\Omega ^{2^{t-r+1}}}\right) ^{\delta _r}.\end{aligned}$$
(27)

Combining (26) and (27), we get

$$\begin{aligned}&\sum _{\mu _1=0}^{s_1}\sum _{\mu _2=0}^{s_2}\left( \prod _{r=1}^{2}\Omega ^{2^{t-r+1}\mu _r}\right) H_{\mu _1,\mu _2}(\mathbf{X})\nonumber \\&= \frac{n}{2^{s}} \left( \prod _{r=1}^{2}\left( 1+\Omega ^{2^{t-r+1}}\right) ^{s_r}\right) \sum _{\delta _1=0}^{s_1}\sum _{\delta _2=0}^{s_2} W_{\delta _1,\delta _2}(\mathbf{X}) \left( \prod _{r=1}^{2}\left( \frac{1-\Omega ^{2^{t-r+1}}}{1+\Omega ^{2^{t-r+1}}}\right) ^{\delta _r}\right) . \end{aligned}$$
(28)

Combining Theorem 2 and (28), the proof can be completed. \(\square\)

Proof of Corollary 7

The proof can be obtained from Corollary 4 by the same technique of the proof of Theorem 3. \(\square\)

Proof of Corollary 8

From the definition of the Krawtchouk polynomials, we get

$$\begin{aligned} \sum _{\mu =1}^{s_{1}} \Omega ^{2^{t-1}\mu }H_\mu (\mathbf{X}_{1})= & {} \frac{n}{2^{s_1}} \sum _{\delta =0}^{s_1} W_{\delta }(\mathbf{X}_1) \sum _{\mu =1}^{s_{1}} \Omega ^{2^{t-1}\mu } P_{\mu }(\delta ,2^{s_1}) \nonumber \\= & {} \frac{n}{2^{s_1}} \sum _{\delta =0}^{s_1} W_{\delta }(\mathbf{X}_1) \left[ \sum _{\mu =0}^{s_{1}} \Omega ^{2^{t-1}\mu } P_{\mu }(\delta ,2^{s_1})-1\right] . \end{aligned}$$
(29)

From (27) and (29), we get

$$\begin{aligned} \sum _{\mu =1}^{s_{1}} \Omega ^{2^{t-1}\mu }H_\mu (\mathbf{X}_{1})= & {} \frac{n}{2^{s_1}} \sum _{\delta =0}^{s_1} W_{\delta }(\mathbf{X}_1) \left[ \left( 1+\Omega ^{2^{t-1}}\right) ^{s_1}\left( \frac{1-\Omega ^{2^{t-1}}}{1+\Omega ^{2^{t-1}}}\right) ^{\delta }-1\right] . \end{aligned}$$
(30)

The proof can be obtained from Corollary 5 and (30). \(\square\)

Proof of Corollary 9

From Corollary 6 by the same technique of Corollary 8. \(\square\)

Proof of Theorem 4

From the definition of the MAP in (3), we get

$$\begin{aligned}&\sum _{i=1}^{n}\sum _{j=1}^{n}\Omega ^{2^{t-1}h_{ij}(\mathbf{X}^{\star })} =n+\Omega ^{2^{t-1}(s+s_1)}\sum _{i=1}^{n}\sum _{j(i\ne j)=1}^{n}\left( \left( \frac{1}{\Omega }\right) ^{2^{t-1}}\right) ^{\xi _{ij}(\mathbf{X}^{\star })} \nonumber \\&{}\quad =n+2\Omega ^{2^{t-1}(s+s_1)}\sum _{i=1}^{n}\sum _{j=i+1}^{n} \sum _{\ell =0}^{\infty }\frac{1}{\ell !}\left( \xi _{ij}(\mathbf{X}^{\star })\ln \left( \left( \frac{1}{\Omega }\right) ^{2^{t-1}}\right) \right) ^{\ell } \nonumber \\&{}\quad =n+n(n-1)\Omega ^{2^{t-1}(s+s_1)} \sum _{\ell =0}^{\infty }\frac{1}{\ell !}\left( \ln \left( \left( \frac{1}{\Omega }\right) ^{2^{t-1}}\right) \right) ^{\ell }M_{\ell }(\mathbf{X}^{\star }). \end{aligned}$$
(31)

Combining Corollary 1 and (31), the proof can be completed. \(\square\)

Proof of Corollary 10

From Corollary 2 by the same technique of Theorem 4. \(\square\)

Proof of Corollary 11

From Corollary 3 by the same technique of Theorem 4. \(\square\)

Proof of Theorem 5

From (15) and (16) with some algebra, we can get the following analytical framework for any of the above-mentioned discrepancies (WD and LD) of the design \(\mathbf{Z}^{(t)}\in U\left(2^tn,2^{2^{t}s_1}4^{2^{t-1}s_2}\right)\)

$$\begin{aligned} \left[ {Disc}\left( \mathbf{Z}^{(t)}\right) \right] ^2= & {} -\Delta ^{2^{t}s_1+2^{t-1}s_2}+\frac{1}{n}\left( \frac{1}{2}\right) ^t\Theta ^{2^{t}s_1+2^{t-1}s_2} +\frac{1}{n^{2}}\left( \frac{1}{2}\right) ^{2t}\left( \Theta \Omega \right) ^{2^{t}s_1+2^{t-1}s_2} \nonumber \\&\times \sum _{i,j,(i\ne j)\in C_1^{2^{t}n}} \left( \frac{1}{\Omega }\right) ^{\xi _{ij}\left( \mathbf{Z}^{(t)}\right) } \left( \frac{\Psi _2}{\Theta \Omega }\right) ^{\zeta _{ij}\left( \mathbf{Z}^{(t)}_2\right) }. \end{aligned}$$
(32)

From Lemmas 5 and 6 in Elsawah et al. (2021), for any two nonnegative sequences with \(\sum _{i=1}^{c}A_{i} = a,\,\sum _{i=1}^{c}B_{i} = b\) and \(\tau _i>1,\,i=1,2\) we have

$$\begin{aligned} \sum _{i=1}^{c}\tau _1^{A_i}\tau _2^{B_i}\ge \tau _1^{\lfloor \frac{a}{c}\rfloor }\tau _2^{\lfloor \frac{b}{c}\rfloor } \left\{ \begin{array}{ll} c(\tau _1+\tau _2-1)+\phi _1(1-\tau _1)+\phi _2(1-\tau _2),\, \phi _1+\phi _2>c;\\ c\tau _1\tau _2+\phi _1\tau _2(1-\tau _1)+\phi _2\tau _1(1-\tau _2),\, \phi _1+\phi _2\le c \end{array} \right. \end{aligned}$$
(33)

and

$$\begin{aligned} \sum _{i=1}^{c}\tau _1^{A_i}\tau _2^{B_i}\ge pe^{\vartheta _{(\omega )}}+(c-p)e^{\vartheta _{(\omega +1)}}, \end{aligned}$$
(34)

respectively, where \(\phi _1=c\left( \lfloor \frac{a}{c}\rfloor -\frac{a}{c}+1\right) ,\) \(\phi _2=c\left( \lfloor \frac{b}{c}\rfloor -\frac{b}{c}+1\right) ,\) \(z_i = \ln \left( \tau _1^{A_i}\tau _2^{B_i}\right) ,\) \(\omega\) is the largest integer such that \(\vartheta _{(\omega )}\le \frac{a \ln \tau _1+b \ln \tau _2}{c}< \vartheta _{(\omega +1)}\) and \(p=\frac{c}{\vartheta _{(\omega +1)}-\vartheta _{(\omega )}}\left( \vartheta _{(\omega +1)}-\frac{a \ln \tau _1+b \ln \tau _2}{c}\right) .\) From the definitions of \(\xi _{ij}\) and \(\zeta _{ij}\) with some algebra, we get

$$\begin{aligned}&\sum _{i(\ne j)=1}^{2^tn}\sum _{j=1}^{2^tn}\xi _{ij}\left( \mathbf{Z}^{(t)}\right) = 2^{3t-3}n^2(s+3s_1)-2^{2t-1}n(s+s_1). \end{aligned}$$
(35)
$$\begin{aligned}&\sum _{i(\ne j)=1}^{2^tn}\sum _{j=1}^{2^tn}\zeta _{ij}\left( \mathbf{Z}^{(t)}_2\right) =2^{3t-2}s_2n^2. \end{aligned}$$
(36)

Combining (32)–(36) with some algebra, the proof can be obtained. \(\square\)

Proof of Theorem 6

From Lemma 4 in Elsawah and Qin (2015), for any nonnegative sequence with \(\sum _{i=1}^{c}V_{i} = v\) and \(\varepsilon >1,\) we have

$$\begin{aligned} \sum _{i=1}^{c}\varepsilon ^{V_i}\ge \varepsilon ^{\lfloor \frac{v}{c}\rfloor } (\varpi +(c-\varpi )\varepsilon ),\end{aligned}$$
(37)

where \(\varpi =c\left( \lfloor \frac{v}{c}\rfloor -\frac{v}{c}+1\right) .\) From the definitions of \(\xi _{ij}\) with some algebra, we get

$$\begin{aligned} \sum _{i(\ne j)=1}^{n}\sum _{j=1}^{n} \xi _{ij}\left( \mathbf{X}^{\star }\right) = \frac{1}{2}n(s+s_1)(n-2). \end{aligned}$$
(38)

Combining Corollary 1, (34), (37) and (38) with some algebra, the proof can be obtained. \(\square\)

Proof of Corollary 12

The proof can be obtained from Corollary 8 and the fact that for any orthogonal array of strength \(s_1\) \(\mathbf{X}_1\in U(n,2^{s_1})\) we get \(W_\delta (\mathbf{X}_1)=0,\,1\le \delta \le s_1.\) \(\square\)

Proof of Corollary 13

From Corollary 9 by the same technique of Corollary 12. \(\square\)

Proof of Corollary 14

From Theorem 1 by the same way of the proof of Corollary 2. \(\square\)

Proof of Corollary 15

From (4) and (5) with some algebra, we get the following formulas of the WD and LD of the extended design \(E^{(t-1)}(\mathbf{X}_2)\in U(2^{t-1}n,2^{2^{t-1}s})\)

$$\begin{aligned}&{[}{WD}\left( E^{(t-1)}(\mathbf{X}_2)\right) ]^2=-\left( \frac{4}{3}\right) ^{2^{t-1}s}+\frac{1}{4^{t-1}n^{2}}\left( \frac{3}{2}\right) ^{2^{t-1}s}\sum _{i=1}^{2^{t-1}n}\sum _{j=1}^{2^{t-1}n}\left( \frac{5}{6}\right) ^{h_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) }. \end{aligned}$$
(39)
$$\begin{aligned}&{[}{LD}\left( E^{(t-1)}(\mathbf{X}_2)\right) ]^2=-\left( \frac{3}{4}\right) ^{2^{t-1}s}+\frac{1}{4^{t-1}n^{2}}\sum _{i=1}^{2^{t-1}n}\sum _{j=1}^{2^{t-1}n}\left( \frac{1}{2}\right) ^{h_{ij}\left( E^{(t-1)}(\mathbf{X}_2)\right) }. \end{aligned}$$
(40)

Combining (15)–(18), (39) and (40) with some algebra, the proof can be completed. \(\square\)

Proof of Corollary 16

The proof is obvious from Corollary 15 by taking \(t=1\) and the fact that any full factorial design in \(U(2^s,2^s)\) has \(\hbox {LD-value}=0.\) \(\square\)

Proof of Theorem 7

From (32) with some algebra, we can get the following analytical framework for any of the above-mentioned discrepancies (WD and LD) of the design \(\mathbf{Z}^{(t)}_{Flex}\in U\left(2^tn+n_1,2^{2^{t}s_1+m_1}4^{2^{t-1}s_2+m_2}\right)\)

$$\begin{aligned} \left[ {Disc}\left( \mathbf{Z}^{(t)}_{Flex}\right) \right] ^2= & {} -\Delta ^{2^{t}s_1+2^{t-1}s_2+m_1+m_2} +\left( \frac{1}{2^tn+n_1}\right) ^2\left( \Theta \Omega \right) ^{2^{t}s_1+m_1+2^{t-1}s_2+m_2} \nonumber \\&\times \sum _{i,j \in C_1^{2^{t}n+n_1}} \left( \frac{1}{\Omega }\right) ^{\xi _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \left( \frac{\Psi _2}{\Theta \Omega }\right) ^{\zeta _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) }. \end{aligned}$$
(41)

The sum term in (41) can be rewritten as follows

$$\begin{aligned}&\sum _{i,j\in C_1^{2^{t}n+n_1}} \left( \frac{1}{\Omega }\right) ^{\xi _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \left( \frac{\Psi _2}{\Theta \Omega }\right) ^{\zeta _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) }=\sum _{i,j\in C_1^{2^{t}n}} \left( \frac{1}{\Omega }\right) ^{\xi _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \left( \frac{\Psi _2}{\Theta \Omega }\right) ^{\zeta _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,+\sum _{i,j\in C_{2^{t}n+1}^{2^{t}n+n_1}} \left( \frac{1}{\Omega }\right) ^{\xi _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \left( \frac{\Psi _2}{\Theta \Omega }\right) ^{\zeta _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,+2\sum _{i\in C_1^{2^{t}n},j\in C_{2^{t}n+1}^{2^{t}n+n_1}} \left( \frac{1}{\Omega }\right) ^{\xi _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \left( \frac{\Psi _2}{\Theta \Omega }\right) ^{\zeta _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) }. \end{aligned}$$
(42)

From (41) with some algebra, we get

$$\begin{aligned}&\left[ \left[ {Disc}\left( \mathbf{Z}^{(t)}_{Flex1}\right) \right] ^2+\Delta ^{2^{t}s_1+2^{t-1}s_2+m_1+m_2}\right] 4^tn^2 =\left( \Theta \Omega \right) ^{2^{t}s_1+m_1+2^{t-1}s_2+m_2} \nonumber \\&{}\quad \,\times \sum _{i,j \in C_1^{2^{t}n}} \left( \frac{1}{\Omega }\right) ^{\xi _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \left( \frac{\Psi _2}{\Theta \Omega }\right) ^{\zeta _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) }. \end{aligned}$$
(43)
$$\begin{aligned}&\left[ \left[ {Disc}\left( \mathbf{Z}^{(t)}_{Flex2}\right) \right] ^2+\Delta ^{2^{t}s_1+2^{t-1}s_2+m_1+m_2}\right] n_1^2 =\left( \Theta \Omega \right) ^{2^{t}s_1+m_1+2^{t-1}s_2+m_2} \nonumber \\&{}\quad \,\times \sum _{i,j \in C_{2^{t}n+1}^{2^{t}n+n_1}} \left( \frac{1}{\Omega }\right) ^{\xi _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) } \left( \frac{\Psi _2}{\Theta \Omega }\right) ^{\zeta _{ij}\left( \mathbf{Z}^{(t)}_{Flex}\right) }. \end{aligned}$$
(44)

From (41)–(44) with some algebra, the proof can be completed. \(\square\)

Proof of Theorem 8

The proof can be obtained from Theorem 7 by the same technique of the proof of Theorem 5. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsawah, A.M. A novel non-heuristic search technique for constructing uniform designs with a mixture of two- and four-level factors: a simple industrial applicable approach. J. Korean Stat. Soc. 51, 716–757 (2022). https://doi.org/10.1007/s42952-021-00159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-021-00159-9

Keywords

Mathematics Subject Classification

Navigation