Skip to main content
Log in

Quantiles naïve, ratio and difference estimators for efficient stratified sampling designs

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

This paper proposes and investigates the bivariate, the marginal distribution functions and quantiles estimators and their asymptotic properties for naïve, ratio, and difference estimators based on the bivariate stratified simple random sampling (BVSSRS) and bivariate stratified ranked set sampling designs (BVSRSS). We demonstrate that the proposed estimators using BVSRSS and BVSSRS are consistent and asymptotically normally distributed. Improved performance of the proposed estimators using BVSRSS compared to BVSSRS supported through an intensive simulation study. The derivation of the optimal allocation based on BVSSRS and BVSRSS is provided. The National Health and Nutrition Examination Survey (NHANES) data is used to illustrate the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Saleh, M. F., & Zheng, G. (2002). Theory & methods: Estimation of bivariate characteristics using ranked set sampling. Australian & New Zealand Journal of Statistics, 44(2), 221–232.

  • Bahadur, R. R. (1966). A note on quantiles in large samples. Annals of Mathematical Statistics, 37, 577–580.

    Article  MathSciNet  Google Scholar 

  • Chen, Z. (2000). On ranked-set sample quantiles and their application. Journal of Statistical Planning and Inference, 83, 125–135.

    Article  MathSciNet  Google Scholar 

  • Chen, Z. H., Sinha, B. K., & Bai, Z. (2004). Ranked set sampling: Theory and applications. Springer.

    Book  Google Scholar 

  • Chen, H., Stasny, E. A., & Wolfe, D. A. (2006). Unbalanced ranked set sampling for estimating a population proportion. Biometrics, 62, 150–158.

    Article  MathSciNet  Google Scholar 

  • Cochran, W. G. (1977). Sampling techniques (3rd ed.). Wiley.

    MATH  Google Scholar 

  • Kaur, A., Patil, G. P., & Taillie, C. (1997). Unequal allocation models for ranked set sampling with skew distributions. Biometrics, 53, 123–130.

    Article  Google Scholar 

  • Kaur, A., Patil, G. P., & Taillie, C. (2000). Optimal allocation for symmetric distributions in ranked set sampling. Annals of the Institute of Statistical Mathematics, 52, 239–254.

    Article  MathSciNet  Google Scholar 

  • Linder, D. F., Samawi, H., Lili, Yu., Chatterjee, A., Huang, Y., & Vogel, R. (2015). On stratified bivariate ranked set sampling for regression estimators. Journal of Applied Statistics., 42(12), 1–13.

    Article  MathSciNet  Google Scholar 

  • Mandowara, V. L., & Mehta, N. (2014). Modified ratio estimators using stratified ranked set sampling. Hacettepe Journal of Mathematics and Statistics, 43(3), 461–471.

    MathSciNet  MATH  Google Scholar 

  • McIntyre, G. A. (1952). A method for unbiased selective sampling using ranked set. Australian Journal of Agricultural Research, 3, 385–390.

    Article  Google Scholar 

  • Ozturk, O., & Wolfe, D. A. (2000). Optimal allocation procedure in ranked set sampling for unimodal and multi-modal distributions. Environmental and Ecological Statistics, 7, 343–356.

    Article  Google Scholar 

  • Rochani, H., Linder, D. F., Samawi, H., & Panchal, V. (2018). On inference of multivariate means under ranked set sampling. Communications for Statistical Applications and Methods, 25(1), 1–13.

    Article  Google Scholar 

  • Samawi, H. M. (1996). Stratified ranked set sample. Pakistan Journal of Statistics, 12(1), 9–16.

    MathSciNet  MATH  Google Scholar 

  • Samawi, H. M. (2001). On quantiles estimation using ranked samples with some applications. Journal of the Korean Statistical Society., 30(4), 667–678.

    MathSciNet  Google Scholar 

  • Samawi, H. M., & Al-Sageer, O. A. (2001). On the estimation of the distribution function using extreme and median ranked set sampling. Biometrical Journal, 43(3), 357–373.

    Article  MathSciNet  Google Scholar 

  • Samawi, H. M., & Al-Saleh, M. F. (2004). On bivariate ranked set sampling for distribution and quantile estimation and quantile interval estimation. Communications in Statistics, Theory and Methods, 33(8), 1801–1819.

    Article  MathSciNet  Google Scholar 

  • Samawi, H. M., & Saeid, L. J. (2004). Stratified extreme ranked set sample with application to ratio estimators. Journal of Modern Applied Statistical Methods, 3(1), 117–133.

    Article  Google Scholar 

  • Samawi, H. M., & Siam, M. I. (2003). Ratio estimation using stratified ranked set sample. Metron, LXI(1–2), 75–90.

    MathSciNet  MATH  Google Scholar 

  • Samawi, H. M., Chatterjee, A., Yin, J., & Rochani, H. (2017). On kernel density estimation based on different stratified sampling. Communication of Statistics: Theory and Methods., 46(22), 10973–10990.

    Article  MathSciNet  Google Scholar 

  • Samawi, H. M., Chatterjee, A., Yin, J. & Rochani, H. (2019). On quantiles estimation based on different stratified sampling with optimal allocation. Communications in Statistics-Theory and Methods, 48(6), 1529–1544.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haresh Rochani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rochani, H., Samawi, H. & Zhang, X. Quantiles naïve, ratio and difference estimators for efficient stratified sampling designs. J. Korean Stat. Soc. 51, 542–567 (2022). https://doi.org/10.1007/s42952-021-00152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-021-00152-2

Keywords

Navigation