Appendix 1: Bias in the estimation of indirect effect
Under the assumed model \(M = a_0 + a_1 X + \epsilon _1\), the covariance between X and M is given by
$$\begin{aligned} Cov(X, M) = Cov( X, a_1 X) = a_1 V(X) \end{aligned}$$
so,
$$\begin{aligned} a_1 = \frac{ Cov(X, M) }{ V(X) } \, . \end{aligned}$$
(5)
The assumed model \(Y = b_0 + b_1 X + b_2 M + \epsilon _2\) can be written as \(Y - b_1 X = b_0 + b_2 M + \epsilon _2\), so
$$\begin{aligned} b_2 = \frac{ Cov(M, Y - b_1X) }{ V(M) } = \frac{ Cov( Y, M ) - b_1 Cov( X, M ) }{ V(M) } \, . \end{aligned}$$
(6)
Similarly, it can be written as \(Y - b_2 M = b_0 + b_1 X + \epsilon _2\), so
$$\begin{aligned} b_1 = \frac{ Cov(X, Y - b_2 M) }{ V(X) } = \frac{ Cov( X, Y ) - b_2 Cov( X, M ) }{ V(X) } \, . \end{aligned}$$
Therefore, Eq. (6) can be written as
$$\begin{aligned} b_2 &= \frac{ Cov( Y, M ) - \left( \frac{ Cov( X, Y ) - b_2 Cov( X, M ) }{ V(X) } \right) Cov( X, M ) }{ V(M) } \\ &= \frac{ V(X) Cov(Y, M) - Cov(X, Y) Cov(X, M) + b_2 [Cov(X, M) ]^2 }{ V(X) V(M) } \, . \end{aligned}$$
By solving for \(b_2\),
$$\begin{aligned} b_2 = \frac{ V(X) Cov(Y, M) - Cov(X, Y) Cov(X, M) }{ V(X) V(M) - [Cov(X, M) ]^2 } \, . \end{aligned}$$
(7)
Now consider the three true models:
$$\begin{aligned} X & = \gamma _0 + \gamma _1 W + \epsilon _1^* \, , \\ M & = \alpha _0 + \alpha _1 X + \alpha _2 W + \epsilon _2^* , \\ Y & = \beta _0 + \beta _1 X + \beta _2 M + \beta _3 W + \epsilon _3^* \, . \end{aligned}$$
From the true relationships among W, X, M, and Y, we have
$$\begin{aligned} V(X) = V(\gamma _1 W + \epsilon _1^*) = \gamma _1^2 \sigma _W^2 + \sigma _1^2 \end{aligned}$$
(8)
and
$$\begin{aligned} Cov(X, M) & = Cov( X, \alpha _1 X + \alpha _2 W ) \nonumber \\ & = \alpha _1 V(X) + \alpha _2 Cov(X, W) \nonumber \\ & = \alpha _1 (\gamma _1^2 \sigma _W^2 + \sigma _1^2) + \alpha _2 \gamma _1 \sigma _W^2 \, . \end{aligned}$$
(9)
Therefore, Eq. (5) can be expressed as the true model parameters as
$$\begin{aligned} a_1 = \alpha _1 + \frac{ \alpha _2 \gamma _1 \sigma _W^2 }{ \gamma _1^2 \sigma _W^2 + \sigma _1^2 } \, . \end{aligned}$$
To express \(b_2\) in Eq. (7) in terms of the true model parameters, we need to rewrite V(M), Cov(Y, M), and Cov(X, Y) as follows. For V(M), we first express
$$\begin{aligned} M &= \alpha _0 + \alpha _1 (\gamma _0 + \gamma _1 W + \epsilon _1^*) + \alpha _2 W + \epsilon _2^* \\ & = (\alpha _0 + \alpha _1 \gamma _0) + (\alpha _1 \gamma _1 + \alpha _2)W + \alpha _1 \epsilon _1^* + \epsilon _2^* \, , \end{aligned}$$
so
$$\begin{aligned} V(M) = (\alpha _1\gamma _1 + \alpha _2) \sigma _W^2 + \alpha _1^2 \sigma _1^2 + \sigma _2^2 \, . \end{aligned}$$
(10)
For Cov(Y, M), note that
$$\begin{aligned} Cov(Y, M) & = Cov(M, Y) \\ &= Cov( M, \beta _1 X + \beta _2 M + \beta _3 W ) \\ &= \beta _1 Cov(M, X) + \beta _2 V(M) + \beta _3 Cov(M, W) \, , \end{aligned}$$
where we previously wrote
$$\begin{aligned} Cov( X, M ) &= \alpha _1 \sigma _1^2 + (\alpha _1 \gamma _1 + \alpha _2) \gamma _1 \sigma _W^2 \, , \\ V(M) &= (\alpha _1\gamma _1 + \alpha _2) \sigma _W^2 + \alpha _1^2 \sigma _1^2 + \sigma _2^2 \, . \end{aligned}$$
Further note that \(Cov(X, W) = Cov(\gamma _1 W, W) = \gamma _1 \sigma _W^2\), and
$$\begin{aligned} Cov( M, W ) &= Cov( \alpha _1 X + \alpha _2 W, W ) \\ &= \alpha _1 Cov(X, W) + \alpha _2 \sigma _W^2 \\ &= \alpha _1 \gamma _1 \sigma _W^2 + \alpha _2 \sigma _W^2 \\ & = ( \alpha _1 \gamma _1 + \alpha _2 ) \sigma _W^2 \, . \end{aligned}$$
Therefore,
$$\begin{aligned} Cov(Y, M) & = \beta _1 [ \alpha _1 \sigma _1^2 + (\alpha _1 \gamma _1 + \alpha _2) \gamma _1 \sigma _W^2 ] \nonumber \\&+ \beta _2 [ (\alpha _1\gamma _1 + \alpha _2) \sigma _W^2 + \alpha _1^2 \sigma _1^2 + \sigma _2^2 ] \nonumber \\&+ \beta _3 [ ( \alpha _1 \gamma _1 + \alpha _2 ) \sigma _W^2 ] \, . \end{aligned}$$
(11)
For Cov(X, Y), we can replace our previous results as
$$\begin{aligned} Cov(X, Y) &= Cov( X, \beta _1 X + \beta _2 M + \beta _3 W ) \nonumber \\ &= \beta _1 V(X) + \beta _2 Cov(X, M) + \beta _3 Cov(X, W) \nonumber \\ & = \beta _1 ( \gamma _1^2 \sigma _W^2 + \sigma _1^2 ) + \beta _2 [ \alpha _1 \sigma _1^2 + (\alpha _1 \gamma _1 + \alpha _2) \gamma _1 \sigma _W^2 ] \nonumber \\&+ \beta _3 \gamma _1 \sigma _W^2 \, . \end{aligned}$$
(12)
After some algebraic work, it can be shown that the denominator of \(b_2\) in Eq. (7) can be simplified as
$$\begin{aligned} V(X) V(M) - [Cov(X, M)]^2 = \alpha _2^2 \sigma _1^2 \sigma _W^2 + (\gamma _1^2 \sigma _W^2 + \sigma _1^2) \sigma _2^2 \, , \end{aligned}$$
and the numerator of \(b_2\) in Eq. (7) can be expressed as
$$\begin{aligned} V(X) Cov(Y, M) - Cov(X, Y) Cov(X, M) &= \beta _2 [ \alpha _2 \sigma _1^2 \sigma _W^2 + (\gamma _1^2 \sigma _W^2 + \sigma _1^2) \sigma _2^2 ] \\&+ \beta _3 \alpha _2 \sigma _1^2 \sigma _W^2 \, . \end{aligned}$$
To this end, we can express \(b_2\) in Eq. (7) as
$$\begin{aligned} b_2 = \frac{ \beta _2 [ \alpha _2 \sigma _1^2 \sigma _W^2 + (\gamma _1^2 \sigma _W^2 + \sigma _1^2) \sigma _2^2 ] + \beta _3 \alpha _2 \sigma _1^2 \sigma _W^2 }{ \alpha _2^2 \sigma _1^2 \sigma _W^2 + (\gamma _1^2 \sigma _W^2 + \sigma _1^2) \sigma _2^2 } \end{aligned}$$
which simplifies as
$$\begin{aligned} b_2 = \beta _2 + \beta _3 \left( \frac{ \alpha _2 \sigma _1^2 \sigma _W^2 }{ \alpha _2^2 \sigma _1^2 \sigma _W^2 + ( \gamma _1^2 \sigma _W^2 + \sigma _1^2 ) \sigma _2^2 } \right) \, . \end{aligned}$$
Therefore, due to an unobserved precursor variable W, researchers would estimate \(a_1 b_2\) which is equal to
$$\begin{aligned} a_1 b_2 = \left[ \alpha _1 + \alpha _2 \gamma _1 \frac{ \sigma _W^2 }{ \gamma _1^2 \sigma _W^2 + \sigma _1^2 } \right] \left[ \beta _2 + \alpha _2 \beta _3 \left( \frac{ \sigma _1^2 \sigma _W^2 }{ \alpha _2^2 \sigma _1^2 \sigma _W^2 + ( \gamma _1^2 \sigma _W^2 + \sigma _1^2 ) \sigma _2^2 } \right) \right] \, . \end{aligned}$$
which is not equal to \(\alpha _1 \beta _2\) in general.
Appendix 2: Bias in the estimation of direct effect
From Eqs. (6) and (7),
$$\begin{aligned} b_1&= \frac{ Cov( X, Y ) - b_2 Cov( X, M ) }{ V(X) } \\&= \frac{ Cov( X, Y ) - \left( \frac{ Cov( Y, M ) - b_1 Cov( X, M ) }{ V(M) } \right) Cov( X, M ) }{ V(X) } \\&= \frac{ V(M) Cov(X, Y) - Cov(Y, M) Cov(X, M) + b_1 [ Cov(X,M) ]^2 }{ V(X) V(M) } \, , \end{aligned}$$
which can be expressed as
$$\begin{aligned} b_1 = \frac{ V(M) Cov(X, Y) - Cov(Y, M) Cov(X, M) }{ V(X) V(M) - [ Cov(X,M) ]^2 } \, . \end{aligned}$$
Recall Eqs. (10), (8), (12), (11), and (9) for each term of \(b_1\). After some algebraic work, the numerator of \(b_1\) can be simplified as
$$\begin{aligned}&V(M) Cov(X, Y) - Cov(Y, M) Cov(X, M) = \beta _1 [ \alpha _2^2 \sigma _1^2 \sigma _W^2 + (\gamma _1^2 \sigma _W^2 + \sigma _1^2) \sigma _2^2 ] \\&+ \beta _3 ( \gamma _1 \sigma _2^2 \sigma _W^2 - \alpha _1 \alpha _2 \sigma _1^2 \sigma _W^2 ) \, , \end{aligned}$$
and the denominator of \(b_1\) can be simplified as
$$\begin{aligned} V(X) V(M) - [ Cov(X,M) ]^2 = \alpha _2^2 \sigma _1^2 \sigma _W^2 + (\gamma _1^2 \sigma _W^2 + \sigma _1^2) \sigma _2^2 \, , \end{aligned}$$
To this end, we can express \(b_1\) as
$$\begin{aligned} b_1 = \frac{ \beta _1 ( \gamma _1^2 \sigma _2^2 \sigma _W^2 + \alpha _2^2 \sigma _1^2 \sigma _W^2 + \sigma _1^2 \sigma _2^2 ) + \beta _3 ( \gamma _1 \sigma _2^2 \sigma _W^2 - \alpha _1 \alpha _2 \sigma _1^2 \sigma _W^2 ) }{ \alpha _2^2 \sigma _1^2 \sigma _W^2 + (\gamma _1^2 \sigma _W^2 + \sigma _1^2) \sigma _2^2 } \end{aligned}$$
which simplifies as
$$\begin{aligned} b_1 = \beta _1 + \beta _3 \left( \frac{ \gamma _1 \sigma _2^2 \sigma _W^2 - \alpha _1 \alpha _2 \sigma _1^2 \sigma _W^2 }{ \alpha _2^2 \sigma _1^2 \sigma _W^2 + (\gamma _1^2 \sigma _W^2 + \sigma _1^2) \sigma _2^2 } \right) \, , \end{aligned}$$
and it is not equal to \(\beta _1\) in general.